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Weinan E (Peking University (China) and Princeton University (US))

Understanding Machine Learning Models in High Dimension

Abstract: In essence, the subject of machine learning is about approximating functions, approxi-
mating probability distributions or solving equations such as the Bellman equation in dynamic pro-
gramming. All these are classical problems that lie at the center of numerical analysis or statistics,
except for one key difference: In classical numerical analysis, we are only able to handle problems in
very low dimensions whereas machine learning typically aims at problems in much higher dimension.
Therefore a natural question is: What is the magic behind machine learning?
The one area in which high dimensional problems have been well studied in numerical analysis is
numerical integration. The lesson we learn from this success is that probabilistic approaches are
essential in high dimension.
In this series of lectures, we focus on the regression problem in supervised learning, i.e. the problem of
approximating high dimensional functions. We try to address the following question: Given a machine
learning model, what are the class of functions that can be approximated by this particular model
efficiently, in the sense that the convergence rate for the approximation, estimation and optimization
errors does not deteriorate as dimensionality goes up? We address this question for three classes
of machine learning models: The random feature model, two-layer neural networks and the residual
neural network model.
In the process, we will advance several ideas that we feel are important for analyzing functions in high
dimension, such as the probabilistic representation of functions and the complexity of function spaces.
We will also discuss the important differences for the gradient-based optimization algorithms in low
and high dimensions.
The lecture series ends with a discussion about some of the key open theoretical questions in this area.
This lecture series is prepared together with Professor Lei Wu at Peking University.
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Dejan Slepcev (Carnegie Mellon University (US))

Variational problems and PDE on random structures: analysis and applications to data
science

Abstract: Many machine learning tasks, such as clustering, regression, classification, and dimension-
ality reduction are commonly described as optimization problems. Namely, these tasks are modeled
by functionals, defined using the available random sample, which specify the desired properties of
the object sought. While the data are often high dimensional, they usually have an intrinsic low-
dimensional structure that makes the learning tasks feasible. The intrinsic geometry is often encoded
by a graph created by connecting the nearby data points. We will introduce mathematical tools used
to study variational problems and PDE-based models posed on random data samples. In particular
we will discuss the connection between discrete optimization problems on random samples to their
continuum limits. This will be used to establish asymptotic consistency of several important machine
learning algorithms. Furthermore we will use these connections to guide the modeling of machine
learning tasks.
We will outline the basic elements of the background material on calculus of variations. We will
develop connections to nonlocal functionals which serve as intermediate objects between the discrete
functionals and their continuum limits. Moreover, we will also consider approaches based on dynamics
on graphs and connect these with the evolution equations describing the continuum limits

Carola-Bibiane Schönlieb (University of Cambridge (UK))

Data-driven solutions to inverse imaging problems

Abstract: In this short lecture series I will give an introduction to some new concepts that use
data-driven components within solutions to inverse imaging problems. Presented methods include
data-driven variational models and plug-and-play approaches, learned iterative schemes aka learned
unrolling, and learned post-processing. In the first part of the lecture I will give an introduction to
inverse problems, classical solution strategies and discuss applications. In the second part we will
investigate learned variational models and plug-and-play approaches. In the third part we discuss
the idea of unrolling an iterative reconstruction algorithm and turning it into a data-driven recon-
struction approach by appropriate parametrisation and optimisation. Throughout presenting these
methodologies, we will discuss their theoretical properties and provide numerical examples for image
denoising, deconvolution and computed tomography reconstruction. The lecture series will finish with
a discussion of open problems and future perspectives.
This lecture series is mainly based on Arridge, S., Maass, P., Öktem, O., Schönlieb, C. B. (2019).
Solving inverse problems using data-driven models. Acta Numerica, 28, 1-174.

Rachel Ward (The University of Texas (US))

An introduction to optimization in large-scale machine learning

Abstract: We will give an introduction to optimization for large-scale machine learning. We will
start with reviewing the basic convergence theory for gradient descent. We will then motivate the
case for stochastic gradient descent in the large-scale setting, and discuss convergence theory for SGD.
Finally, we will discuss extensions of the basic SGD algorithm which are important for robustness and
accelerated convergence: adaptive gradient SGD and momentum.
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Abstracts for Contributed Talks

Jing An (Max Planck Institute for Mathematics in the Sciences (Germany))

Resampling vs. Reweighting for faithful stochastic optimization

Abstract: Resampling and reweighting are two commonly-used techniques to rebalance biasedly-
sampled data sets. In this talk, I will discuss resampling vs. reweighting in two types of data science
problems when stochastic gradient algorithms are used. The first problem is that when training mod-
els, to correct bias in the data sets, resampling is often observed to outperform reweighting. The
reason behind this phenomenon can be explained by using tools from dynamical stability and stochas-
tic asymptotics. The second problem we consider is that when a data set has feature disparities, its
corresponding loss landscape will cause stochastic gradient descent to experience different variances
at different minima. In order to mitigate such bias and perform faithful optimization, we propose a
combined resampling-reweighting scheme to balance the variance at local minima. Further quanti-
tative results about how the combined resampling-reweighting strategy improves stability and local
convergence will also be discussed in this talk.

Cristina Cipriani (Technische Universität München (Germany))

A Mean-Field Optimal Control Approach to the Training of NeurODEs

Abstract: NeurODEs are a specific type of neural networks which contain shortcut connections that
allow interpreting their training as a stochastic optimal control problem. Starting from this concept
and extending it to its mean-field version, we derive first order optimality conditions in the form of a
mean-field version of the Pontryagin Maximum Principle based on a generalized Lagrange multiplier
theorem on convex sets of spaces of measures. The resulting training method provides a unique
control solution, which is Lipschitz continuous. Finally, some explanatory and easy-to-read numerical
examples will give insights into the resulting algorithm.

Stephen Moore (University of Cape Coast (Ghana))

Transmission dynamics of Epidemiological models: Ordinary and Fractional Differential
Equations

Abstract: In this talk, we present the mathematical analysis for the transmission dynamics of epi-
demiological models. We will consider a COVID-19 model using data from Ghana. In the first part,
we will consider the analysis and numerics for a determinstic model. In the second part, we will extend
the analysis to the Caputo fractional order model. Finally, we will present numerical results for the
fractional order model and discuss possible future directions.

Rodrigo Iza Teran (Fraunhofer Institute SCAI (Germany))

Spectral Approach for Effective Surrogate Modelling

Abstract: Constructing interpretable reduced order models for Finite Element Analysis using a
learning approach for realistic engineering data where several input parameters change is challenging.
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State of the art methods are based on the Proper Orthogonal Decompositions (POD) and variations
of it. This approach relies on a truncated SVD decomposition of a set of simulation snapshots. A
drawback of this approach is that it relies on computing projections on the principal axes of an m-
dimensional ellipsoid that best fits the data co-variance in a least square sense. This is optimal if the
simulated dynamics is linear but non-linear dynamics will in general produce data that will lie near or
on a curved manifold. Despite this, such cases do have a natural linear structure, namely the Hilbert
space of square-integrable functions on an intrinsic manifold provided adequate a linear operator can
be found for this case. We propose an approach that under certain assumptions compute such a
linear operator, the Laplace-Beltrami operator, that is independent of the 3D Finite Element results
and depends only on the underlying geometry. A low dimensional latent space representation can
be gained by projecting the simulation results to the eigenvectors of the Laplace-Beltrami operator
and keeping only the projections with highest variance. This projections are shown to represent
similarities between simulation fields so that clusters can be found in the simulations. Furthermore,
they correlate with determined sensible input variables making them suitable as an intermediate
representation to compute predictors for the Finite Element results. Example applications for CFD
and Forming simulations are presented to demonstrate the approach.

Rachelle Sambayan (University of the Philippines (Philippines))

Kernel Matrix Completion

Abstract: In this study, in order to improve the accuracy of machine learning, methodologies for
completing multiple incomplete data representations have been developed. In data analysis including
pattern recognition and clustering, each data object is not limited to a single representation. In many
applications, several measurement methods are available to objects to be analyzed, yielding multiple
data representations. For example, in the task of function prediction of proteins in cells, each protein
can be represented with its amino acid sequence, cubic structure, interactions with other proteins,
and expression data. Each data representation provides useful information for function prediction.
Proteins that have homology in their amino acid sequences are likely to have same functions in cells.
The cubic structures of proteins determine functions. Many function mechanisms in cells depend on
multiple interacted proteins. Proteins with same functions express the same conditions in cells. Thus,
each of these representations is informative for function prediction. Research reports have shown
that analysis accuracy is improved by combining multiple data representations. However, an issue in
data analysis based on multiple data representations is that data examples lacking any representation
cannot be included in machine learning. In this study, several new methods for completing incomplete
data are presented. To assess the effectiveness of the new data completion methods, experiments on
real-world data are carried out. The results are then reported.

Christian Offen (Paderborn University (Germany))

Learning Euler–Lagrange Dynamics from Data

Abstract: To identify equations of motions that govern a dynamical system from observed motions
is an important task in a variety of applications including optimal control of mechanical systems.
While the differential equations themselves might be unknown, prior knowledge about their structure
is often available, for instance that these arise from a variational principle, i.e. they are Euler–
Lagrange equations to some (a priori unknown) Lagrangian. This relates to many qualitative features
of dynamical systems, such as the presence of conservation laws. It is, therefore, crucial to incorporate
variational structure into learning algorithms for dynamical systems such that the learned model shares
important features with the exact physical system.
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