Families of algebraic varieties Felix Klein Lectures

János Kollár
Princeton University

Oct, 2023

Plan of the lectures

- History and examples, from Riemann to Mumford
- Moduli of varieties; main questions and definitions
- Characterizations of stable families
- Du Bois property and consequences
- K-flatness
- Difficulties in positive characteristic
- The lectures are mostly independent of each other.
- For details, see mainly the books Singularities of the minimal model program, CUP, 2013 Families of varieties of general type, CUP, 2023

Families of algebraic varieties
Felix Klein Lecture \# 4
János Kollár

Du Bois singularities and consequences

When to turn to Du Bois singularities?

Thesis

If you have singularities that are not rational or CM, but close to it, Du Bois singularities may give the answer.

Example. $X \rightarrow S$ flat. When is $\omega_{X / S}$ flat?
Classical answer: if fibers are CM (easy proof). New answer: if fibers are Du Bois.
(Will give longer, roundabout proof.)

Non-example: cones over $C \times D$, slide 1
Let C, D be a smooth, projective curves of genus ≥ 2, and L, M ample line bundles of degrees d, e. Let
$X_{L, M}:=\operatorname{Spec} \oplus_{m \in \mathbb{Z}} H^{0}\left(C \times D,(L \boxtimes M)^{m}\right)$ be the cone over $C \times D$ with ample line bundle $L \boxtimes M$.

Then $\omega_{X_{L, M}}$ is the sheaf corresponding to
$\oplus_{m \in \mathbb{Z}} H^{0}\left(C \times D,\left(\omega_{C} \boxtimes \omega_{D}\right) \otimes(L \boxtimes M)^{m}\right)$.
Examples. For $g-1<d \leq 2 g-2$ and suitable M
(1) the $X_{L, M}$ form a flat family over $\operatorname{Pic}^{d}(C)$, but the $\omega_{X_{L, M}}$ are not flat; or
(2) the $X_{L, M}$ do not form a flat family over $\operatorname{Pic}^{d}(C)$, but the $\omega_{X_{L, M}}$ are flat.

Non-example: cones over $C \times D$, slide 2
Key property: $h^{0}\left(C, L^{m}\right)$ and $h^{0}\left(C, \omega_{C} \otimes L^{-m}\right)$ vary with L only for $m=1$.

So, the only summands that vary with L are

- $H^{0}(C, L) \otimes H^{0}(D, M) \quad$ in $\mathcal{O}_{X_{L, M}}$, and
- $H^{0}\left(C, \omega_{C} \otimes L^{-1}\right) \otimes H^{0}\left(D, \omega_{D} \otimes M^{-1}\right) \quad$ in $\omega_{X_{L, M}}$.

Therefore:

- $X_{L, M}$ not flat over $\operatorname{Pic}^{d}(C)$ iff $H^{0}(D, M) \neq 0$, and
- $\omega_{X_{L, M}}$ not flat over $\operatorname{Pic}^{d}(C)$ iff $H^{0}\left(D, \omega_{D} \otimes M^{-1}\right) \neq 0$.

When is ω flat?

X proper of dimension n, L ample. Then

- $\omega_{X}=$ sheaf of $\oplus_{m} H^{0}\left(X, \omega_{X} \otimes L^{m}\right)$, and
- $H^{0}\left(X, \omega_{X} \otimes L^{m}\right)$ is dual to $H^{n}\left(X, L^{-m}\right)$.

Corollary. $g: X \rightarrow S$ projective, relative $\operatorname{dim} n$. Then $\omega_{X / S}$ is flat and commutes with base changes iff $R^{n} g_{*} L^{-m}$ is free for $m \gg 1$.

Principles:

- ω_{X} is encoded in the $H^{i}\left(X, L^{-1}\right)$ for all L ample.
- If need help, ask Sándor Kovács.

Detour: cyclic covers 1
For $s \in H^{0}\left(X, L^{[m]}\right)$ we have $\pi: X[\sqrt[m]{s}] \rightarrow X$ as

- $\operatorname{Spec}_{X}\left(\mathcal{O}_{X} \oplus L^{[-1]} \oplus \cdots \oplus L^{[1-m]}\right)$, or as
- $(s=0) \subset \operatorname{Spec}_{X} \oplus_{r \geq 0} L^{[r]}$.

Note that

- $\pi_{*} \omega_{X[\sqrt[m]{s}]} \cong \omega_{X} \oplus \omega_{X}[\otimes] L \oplus \cdots \oplus \omega_{X}[\otimes] L^{[m-1]}$.

Thus, if $L=\omega_{X}$ then

- $\pi_{*} \omega_{X[\sqrt[m]{s}]} \cong \omega_{X} \oplus \cdots \oplus \omega_{X}^{[m]}$.

Detour: cyclic covers 2
If L ample, then

- L^{-1} is direct summand of $\pi_{*} \mathcal{O}_{X[\sqrt[m]{s}]}$, so
- $H^{i}\left(X, L^{-1}\right)$ is direct summand of $H^{i}\left(X[\sqrt[m]{s}], \mathcal{O}_{X[\sqrt[m]{s}]}\right)$.

If $\omega_{X}=L$ ample, then

- $\omega_{X}^{[r]}$ are direct summands of $\pi_{*} \omega_{X[\sqrt[m]{s}]}$, so
- $H^{i}\left(X, \omega_{X}^{[r]}\right)$ are direct summands of $H^{i}\left(X[\sqrt[m]{s}], \omega_{X[\sqrt[m]{s}}\right)$.

When is ω flat?

Let \mathcal{S} be a class of singularities, closed under

- $X \mapsto X \times \mathbb{A}^{1}$, and
- general hyperplane sections $X \mapsto H \cap X$,
- so general cyclic covers with invertible L.
$\operatorname{Flat}_{n}(\mathcal{S}):=$ all $g: X \rightarrow B$
flat, projective, relative $\operatorname{dim} n$, fibers in \mathcal{S}.
Corollary. For \mathcal{S} equivalent:
- $R^{n} g_{*} L^{-m}$ is locally free for all ample L, and for all $(g: X \rightarrow B) \in \operatorname{Flat}(\mathcal{S})$.
- $R^{n} g_{*} \mathcal{O}_{X}$ is locally free for all $(g: X \rightarrow B) \in \operatorname{Flat}(\mathcal{S})$.

When is $H^{i}\left(X, \mathcal{O}_{X}\right)$ flat?

Cohomology and base change
Let A be Artinian with residue field k, and $g: X_{A} \rightarrow \operatorname{Spec} A$ flat, proper.

Equivalent:

- the $H^{i}\left(X_{A}, \mathcal{O}_{X_{A}}\right)$ are free A-modules.
- $H^{i}\left(X_{A}, \mathcal{O}_{X_{A}}\right) \rightarrow H^{i}\left(X_{k}, \mathcal{O}_{X_{k}}\right)$.

Illustration for $A=k[\epsilon]$:

$$
\begin{array}{ccccc}
H^{i}\left(X_{k}, \mathcal{O}_{X_{k}}\right) & \xrightarrow{\epsilon} \quad H^{i}\left(X_{A}, \mathcal{O}_{X_{A}}\right) & \rightarrow & H^{i}\left(X_{k}, \mathcal{O}_{X_{k}}\right) \\
H^{i+1}\left(X_{k}, \mathcal{O}_{X_{k}}\right) & \xrightarrow{\epsilon} & H^{i+1}\left(X_{A}, \mathcal{O}_{X_{A}}\right) & \rightarrow & H^{i+1}\left(X_{k}, \mathcal{O}_{X_{k}}\right)
\end{array}
$$

Du Bois singularities 1

Global defn (incorrect):
$H^{i}(X, \mathbb{C}) \rightarrow H^{i}\left(X, \mathcal{O}_{X}\right)$ if X proper and DB.
Theorem (Du Bois-Jarraud, 1974) If X_{k} is DB then

$$
H^{i}\left(X_{A}, \mathcal{O}_{X_{A}}\right) \rightarrow H^{i}\left(X_{k}, \mathcal{O}_{X_{k}}\right) .
$$

(A Artinian with residue field k)
Proof.

$$
\begin{array}{ccc}
H^{i}\left(X_{A}, \mathcal{O}_{X_{A}}\right) & \rightarrow H^{i}\left(X_{k}, \mathcal{O}_{X_{k}}\right) \\
H^{i}\left(X_{A}, \mathbb{C}\right) & \rightarrow & H^{i}\left(X_{k}, \mathbb{C}\right)
\end{array}
$$

Recall: semi-log-canonical $=$ singularities we have on limits of canonical models.

- Deminormal:=X only nodes in codimension 1 and S_{2} (so ω_{X} line bundle in codim 1),
- $\omega_{X}^{[m]}$ is locally free for some $m>0$ (with section σ^{m}),
- Three equivalent versions:
- Using resolution I: $K_{Y} \sim p^{*} K_{X}+$ (effective) $-E$, where $E=$ reduced exceptional divisor.
— Using resolution II: there is $p^{*} \omega_{X}^{[r]} \rightarrow \omega_{Y}^{[r]}(r E) \quad \forall r \geq 0$.
- Using local volume: $\int_{X} \sigma \wedge \bar{\sigma}$ has only logarithmic growth: $=\left.\left|\int_{X}\right| g\right|^{\epsilon} \cdot \sigma \wedge \bar{\sigma} \mid<\infty$, for every g vanishing on $\operatorname{Sing} X$ and $\epsilon>0$.

Du Bois singularities 2

Theorem (Kollár-Kovács, 2010)

Semi-log-canonical is Du Bois.
(More generally, (X, Δ) slc, then any union of \log canonical centers is Du Bois. Kollár-Kovács, 2010, 2020).

Corollary. Let $g: X \rightarrow S$ be flat, fibers slc. Then $\omega_{X / S}$ is flat over S and commutes with base change.
What about the other $\omega_{X / S}^{[r]}$?

Theorem

$X \rightarrow S$ flat with slc fibers, S reduced and $\omega_{X / S}^{[m]}$ is locally free for some $m>0$. Then all $\omega_{X / S}^{[r]}$ are flat and commute with base change.

Proof. Assume $S=C$ is a smooth curve and $\omega_{X / C}^{[m]}$ is free.
Take $\pi: X[\sqrt[m]{s}] \rightarrow X$.
Reid's lemma: $X[\sqrt[m]{s}]$ is log canonical
Elkik, ...: $\omega_{X[\sqrt[m]{s}] / C}$ has S_{2} fibers
Recall: The $\omega_{X / C}^{[r]}$ are direct summands of $\pi_{*} \omega_{X[\sqrt[m]{s}] / C}$.
So fibers of $\omega_{X / C}^{[r]}$ agree with $\omega_{X_{c}}^{[r]}$.

Back to definition of stable morphisms 1
The definition of 'stable morphism' included:
(*) The $\omega_{X / B}^{[r]}$ are flat and commute with base change.

Thesis

In defining stable morphisms:
(1) over smooth curves, we proved (*),
(2) over reduced bases, (*) works out, and
(3) over general bases, we have to require (*).

Back to definition of stable morphisms 2

Theorem. (Altmann-Kollár, 2019) For many cyclic quotients $S_{0}=\mathbb{C}^{2} / \frac{1}{n}(1, q)$ there are flat deformations $S \rightarrow \operatorname{Spec} A$ for $A:=\mathbb{C}[\epsilon]$, such that,

- $\omega_{S / A}^{[n]}$ is free, but
- $\omega_{S / A}^{[r]}$ is not flat if $r \not \equiv 0,1 \bmod n$.

Corollary The assumption (*):
"the $\omega_{X / B}^{[r]}$ are flat over B " needs to be added by hand for families of surfaces.

Stability in codimension 3

Theorem (Kollár-Kovács, 2023)

Stability is automatic in codimension ≥ 3.
That is:
Let $f: X \rightarrow B$ be flat and finite type, such that

- fibers are semi-log-canonical, and
- locally stable in codim ≤ 2 (in each fiber).

Then locally stable everywhere.
Note. Can allow non-flatness in codim ≥ 3.
Question. Is this true for pairs (X, Δ) ?

Key Theorem
Key Theorem. Let $f: X \rightarrow B$ be finite type, such that

- flat with Du Bois fibers in codim ≤ 2 (in each fiber),
- fibers have Du Bois (partial) normalization.

Then $\omega_{X / B}$ is flat and commutes with base change.
Surprise. We can not show that \mathcal{O}_{X} is flat.
Lemma. $\pi: \bar{Y} \rightarrow Y$ isom in codim ≤ 1. Then

$$
\pi_{*} \omega_{\bar{Y}} \cong \omega_{Y}
$$

Proof of Key Theorem, slide 1

As before, one ingredient is the following:
Claim. Let A be Artinian with residue field k, and $g: X_{A} \rightarrow \operatorname{Spec} A$, proper, pure dim n.
Then $H^{n}\left(X_{A}, \mathcal{O}_{X_{A}}\right)$ is a free A-module if

- g is flat in codimension ≤ 2, and
- $H^{i}\left(X_{k}, \mathbb{C}\right) \rightarrow H^{i}\left(X_{k}, \mathcal{O}_{X_{k}}\right)$ for $i=n, n-1$.

Illustration for $A=k[\epsilon]$:

$$
\begin{array}{rlll}
H^{n-1}\left(X_{k}, \mathcal{O}_{X_{k}}\right) & \xrightarrow{\epsilon} & H^{n-1}\left(X_{A}, \mathcal{O}_{X_{A}}\right) & \rightarrow
\end{array} H^{n-1}\left(X_{k}, \mathcal{O}_{X_{k}}\right) .
$$

Proof of Key Theorem, slide 2

Y : pure $\operatorname{dim} n$, (embedded points allowed)
$\tau: \bar{Y} \rightarrow Y$ partial normalization.
Claim $H^{i}(Y, \mathbb{C}) \rightarrow H^{i}\left(Y, \mathcal{O}_{Y}\right)$ for $i=n, n-1$ if

- \bar{Y} is Du Bois,
- $\tau: \bar{Y} \rightarrow Y$ is a homeomorphism, and
- $\tau: \bar{Y} \rightarrow Y$ is isomorphism in codimension ≤ 2.

Proof.

$$
\begin{aligned}
& H^{i}(Y, \mathbb{C}) \rightarrow H^{i}\left(Y, \mathcal{O}_{Y}\right) \\
& \downarrow \downarrow \\
& H^{i}(\bar{Y}, \mathbb{C}) \rightarrow H^{i}\left(\bar{Y}, \mathcal{O}_{\bar{Y}}\right)
\end{aligned}
$$

Does this ever happen?

Slc version of Key Theorem
(A Artinian case)
Let $f: X \rightarrow \operatorname{Spec} A$ be finite type, such that

- slc (partial) normalization $\bar{X}_{k} \rightarrow X_{k}$, and
- locally stable in codim ≤ 2 (in each fiber).

Then $\omega_{X / B}$ is flat and commutes with base change.
Thus, if $\omega_{\bar{X}_{k}}$ is locally free (and X is S_{2}), then:

- $\omega_{X / A}$ is flat and locally free (!),
- \mathcal{O}_{X} is flat, and
- all the $\omega_{X / A}^{r}$ are flat and locally free.
- So $f: X \rightarrow \operatorname{Spec} A$ is locally stable.

How to make ω locally free?

Lemma. If $\omega_{U}^{[m]}$ is free, take cyclic cover

$$
\pi: \bar{U}:=\operatorname{Spec}_{U}\left(\mathcal{O}_{U} \oplus \omega_{U} \oplus \cdots \oplus \omega_{U}^{[m-1]}\right) \rightarrow U
$$

Then $\omega_{\bar{U}}$ is free.
Proof. We know that $\pi_{*} \omega_{\bar{U}} \cong \oplus_{i=0}^{m-1} \operatorname{Hom}_{U}\left(\omega_{U}^{[i]}, \omega_{U}\right)$
and we have 1 as a section of the $i=1$ summand $\operatorname{Hom}_{U}\left(\omega_{U}, \omega_{U}\right) \cong \mathcal{O}_{U}$.

Stability in codimension 3 - proof 1

Induction + working locally, assume that:

- $\omega_{X_{k}}^{[m]}$ is free, and
- $X \rightarrow$ Spec A is stable on $U:=X \backslash\{x\}$.

So $\omega_{X / A}^{[-m]} \in$ kernel of $\operatorname{Pic}(U) \rightarrow \operatorname{Pic}\left(U_{k}\right)$.
Fact: this kernel is a vector space, so divisible.
Thus there is a unique line bundle L_{U} on U (with push-forward L on X) such that
$L_{U_{k}} \sim \mathcal{O}_{U_{k}}$ and $\left(\omega_{X / A} \otimes L\right)^{[-m]} \cong \mathcal{O}_{X}$.
Note. L flat/A iff free.
Cyclic cover $\pi: Y:=\operatorname{Spec}_{X} \oplus_{i=0}^{m-1}\left(\omega_{X / A} \otimes L\right)^{[i]} \rightarrow X$.

Stability in codimension 3 - proof 2
$\pi: Y:=\operatorname{Spec}_{X} \oplus_{i=0}^{m-1}\left(\omega_{X / A} \otimes L\right)^{[i]} \rightarrow X$.
Over U_{k} we have $\operatorname{Spec}_{U_{k}} \oplus_{i=0}^{m-1} \omega_{U_{k}}^{[i]}$, so
$\bar{Y}_{k} \cong \operatorname{Spec}_{X_{k}} \oplus_{i=0}^{m-1} \omega_{X_{k}}^{[i]} \rightarrow Y_{k}$ is partial normalization. Note: Y_{k} could have embedded points over x !

By slc version of Key Theorem: $\omega_{Y / A}$ and \mathcal{O}_{Y} are both flat.
$\pi_{*} \omega_{Y / A}$ has a summand $\operatorname{Hom}_{U}\left(\omega_{X} \otimes L, \omega_{X}\right) \cong L^{[-1]}$, so $L^{[-1]}$ flat/ A, and $L \cong \mathcal{O}_{X}$.
So $\pi_{*} \mathcal{O}_{Y} \cong \oplus_{i=0}^{m-1} \omega_{X / A}^{[i]}$, and all summands are flat.

Definition of Du Bois

There is a filtered complex $\underline{\Omega}_{\dot{X}}$ that computes the mixed Hodge structure on $H^{\cdot}(X, \mathbb{C})$, hence
$H^{i}(X, \mathbb{C}) \rightarrow H^{i}\left(X, \Omega_{X}^{\circ}\right)$ for any proper X.

Correct definition of Du Bois:
$\mathcal{O}_{X} \rightarrow \underline{\Omega}_{X}^{\circ}$ is a quasi-isomorphism.

Local cohomology lifting

A Artinian with residue field k
$g: X \rightarrow \operatorname{Spec} A$ finite type (not assumed flat)
Theorem (Kollár-Kovács, 2020) Assume
(1) either char $=0$ and X_{k} is Du Bois,
(2) or char >0 and X_{k} is F-pure.

Then for every $x \in X$ and i :

$$
H_{x}^{i}\left(X, \mathcal{O}_{X}\right) \rightarrow H_{x}^{i}\left(X_{k}, \mathcal{O}_{X_{k}}\right) .
$$

Families of algebraic varieties
Felix Klein Lecture \# 5
János Kollár

K-flatness

Families of algebraic varieties
Felix Klein Lecture \# 5
János Kollár

K-flatness

Why K?

Families of algebraic varieties
Felix Klein Lecture \# 5
János Kollár

K-flatness

Why K?
Originally had C-flat for Cayley, but needed new notion.

Families of algebraic varieties
Felix Klein Lecture \# 5
János Kollár

K-flatness

Why K?
Originally had C-flat for Cayley, but needed new notion.
$K=$ Cayley.

Moduli of pairs (X, Δ)

Objects. Replace K_{X} by $K_{X}+\sum a_{i} D_{i}$.
Families. $g:\left(X, \Delta=\sum a_{i} D_{i}\right) \rightarrow S$ such that

- fibers are stable pairs,
- $K_{X / S}+\sum a_{i} D_{i}$ is \mathbb{Q}-Cartier, and
- the D_{i} are ????

For 30 years we had a theory where a basic definition was not known.

Answer given finally in (K. 2019).

For ???? flatness is too much
Example (Hassett, 1993)
Smooth quadric degenerates to quadric cone:

$$
\left(x y+z^{2}-t^{2} u^{2}=0\right) \subset \mathbb{P}^{3} \times \mathbb{A}^{1}
$$

$D_{0}=L_{0}+\frac{1}{2}\left(L_{0}^{\prime}+L_{0}^{\prime \prime}\right)$ (lines through vertex)
$D_{t}=L_{t}+\frac{1}{2}\left(L_{t}^{\prime}+L_{t}^{\prime \prime}\right)$ (where $\left.L_{t}^{\prime} \cap L_{t}^{\prime \prime}=\emptyset\right)$.
Note: $\chi\left(L_{0}^{\prime}+L_{0}^{\prime \prime}\right)=1$, but $\chi\left(L_{t}^{\prime}+L_{t}^{\prime \prime}\right)=2$.
(Can get irreducible examples too.)

Coefficients $>\frac{1}{2}-$ slide 1
Theorem (Kollár, 2014)
Let $\left(X, \sum_{i \in I} a_{i} D_{i}\right) \rightarrow S$ be stable, with S reduced. Assume that $a_{i}>\frac{1}{2}$. Then, for every $J \subset I$, $\cup_{i \in J} D_{i} \rightarrow S$
is flat with reduced fibers.

Coefficients $>\frac{1}{2}-$ slide 2
Corollary. If $a_{i}>\frac{1}{2}$, we can handle the moduli problem as

- $X \rightarrow S$ is flat, and
- ???? $:=$ flat, so the D_{i} are in $\operatorname{Hilb}(X / S)$.

However, this is not possible if $a_{i} \leq \frac{1}{2}$.

Mumford divisors - 1

$g: X \rightarrow S$ projective of pure relative $\operatorname{dim} n$.
Definition. $D \subset X$ a relative Mumford divisor iff
$(*) g$ smooth and D is Cartier at η_{s},
for all $s \in S$ and all generic points $\eta_{s} \in D_{s}$.
Corollary. D_{s} defined as a divisor on X_{s} :
Cartier at generic points, then take closure.
Warning.
D_{s} is not the scheme-theoretic fiber.
The later can have embedded subschemes.

Mumford divisors - 2

Thesis

Over reduced bases, the correct higher dimensional analogs of flat families of pointed stable curves are:
Stable families $g:\left(X, \sum a_{i} D_{i}\right) \rightarrow S$, where the $D_{i} \rightarrow S$ are Mumford.

Mumford divisors over $k[\epsilon]$ - example
Local version. $\operatorname{Pic}\left(\mathbb{A}_{k[f]}^{2} \backslash\{(0,0)\}\right)$ is infinite dimensional.
Example: $I_{n}:=\left(x^{2}, x y^{n}+\epsilon, \epsilon x\right) \subset k[x, y, \epsilon]$. Note that
$k[x, y, \epsilon] / I_{n} \cong k[x, y] /\left(x^{2}\right)$, but
$k[x, y, \epsilon] /\left(I_{n}, \epsilon\right) \cong k[x, y] /\left(x^{2}, x y^{n}\right)$ with torsion ideal: $\left\langle x, x y, \ldots, x y^{n-1}\right\rangle$.

Projective version.

The space of Mumford divisors $D \subset \mathbb{P}_{k[]]}^{2}$ such that

$$
D_{k}=(\text { line })+(\text { embedded points }) \text { is }
$$

infinite dimensional.

K-flatness - first definition
Let $g: D \rightarrow S$ be projective, pure relative dimension $n-1$.
Assume that at generic points of each fiber

- g is flat, and
- embedding dimension of fiber $\leq n$.

Assume first: S local with infinite residue field.
Definition
$g: D \rightarrow S$ is K-flat iff all images $D \rightarrow \mathbb{P}_{S}^{n}$ are flat over S.
In general: the previous holds for all
localization + residue field extension.

Thesis

The correct higher dimensional analogs of flat families of pointed stable curves are:
Stable families $g:\left(X, \sum a_{i} D_{i}\right) \rightarrow S$, where the $D_{i} \rightarrow S$ are K-flat.

Thesis

The correct higher dimensional analogs of flat families of pointed stable curves are:
Stable families $g:\left(X, \sum a_{i} D_{i}\right) \rightarrow S$, where the $D_{i} \rightarrow S$ are K-flat.

However, although K-flatness is a surprisingly good property, there could be other possibilities.

Example - plane curves over $k[\epsilon]$

Start with $C:=(f(x, y)=0)$.
Flat defs: $f(x, y)=\psi(x, y) \in$ where $\psi \in k[x, y]$

Example - plane curves over $k[\epsilon]$

Start with $C:=(f(x, y)=0)$.
Flat defs: $f(x, y)=\psi(x, y) \epsilon$ where $\psi \in k[x, y]$
Flat defs of $C \backslash\{(0,0)\}$:

$$
\text { (*) } \quad f(x, y)=\psi(x, y) \epsilon, \quad z=\phi(x, y) \epsilon
$$

where ψ, ϕ regular on $C \backslash\{(0,0)\}$.
Theorem. $(*)$ is K -flat iff ψ is regular on C and

- $f_{x} \phi, f_{y} \phi$ are regular on C.

Example. Monomial curve ($x^{c}=y^{a}$) or $t \mapsto\left(t^{a}, t^{c}\right)$.

- becomes: $t^{a c-a} \phi(t), t^{a c-c} \phi(t) \in k\left[t^{a}, t^{c}\right]$.

Get (a-1)(c-1)-dim family of K-flat but non-flat defs.

Cayley coordinates

called:
Cayley form in Hodge-Pedoe
Zugeordnete Form by van der Waerden coordonnées de Chow in French

Cayley coordinates

called:
Cayley form in Hodge-Pedoe
Zugeordnete Form by van der Waerden coordonnées de Chow in French
"cette horreur de coordonnées de Chow"
Serre letter to Grothendieck, 1956

Cayley flatness - 1
$C \subset \mathbb{P}^{3}$ a curve.
Cayley hypersurface (Cayley, 1860):

$$
\mathrm{Ca}(C):=\{L \in \operatorname{Grass}(1,3): L \cap C \neq \emptyset\} .
$$

Note that
$\mathrm{Ca}(C)=$
$\cup_{p \in \mathbb{P}^{3}}($ lines through p that meet $C)=$ $\cup_{p \in \mathbb{P}^{3}}($ image of projection of C from p).

Cayley flatness - 2
$Z \subset \mathbb{P}^{N}$ of pure dimension $n-1$
Cayley hypersurface:

$$
\mathrm{Ca}(Z):=\{L \in \operatorname{Grass}(N-n, N): L \cap Z \neq \emptyset\} .
$$

Set $G:=\operatorname{Grass}(N-n-1, N)(=$ projection centers).
Note that
$\mathrm{Ca}(Z)=$
$\cup_{M \in G}(L$ through M that meet $Z)=$
$\cup_{M \in G}($ image of projection of Z from $M)=$
$\cup\left(\right.$ images of all projections $\left.Z \rightarrow \mathbb{P}^{n}\right)$.

Cayley flatness - Basic Theorems (Kollár, 2019)

Theorem 1. One can extend the definition of Cayley hypersurface to families $D \subset \mathbb{P}_{S}^{N}$, assuming that

- pure relative dimension $n-1$,
- g is flat at generic points of each fiber, and
- fibers have embedding dimension $\leq n$ at generic points.

Theorem 2. Assume S local with infinite residue field. The following are equivalent:

- $\mathrm{Ca}(D) \rightarrow S$ is flat over S.
- the images of all* projections $D \rightarrow \mathbb{P}_{S}^{n}$ are flat over S.
- the images of general projections $D \rightarrow \mathbb{P}_{S}^{n}$ are flat $/ S$.

This is called C-flatness.

Cayley flatness - five versions - 1
C-flatness: all linear projections $D \rightarrow \mathbb{P}_{s}^{n}$.
Stable C-flatness: all linear projections composed with Veronese embeddings $D \rightarrow \mathbb{P}_{s}^{n}$.

K-flatness: all morphisms $D \rightarrow \mathbb{P}_{s}^{n}$.
Local K-flatness: all local morphisms $D \supset D^{\circ} \rightarrow \mathbb{A}_{S}^{n}$.
Formal K-flatness: all morphisms after all completions

$$
\widehat{D} \rightarrow \widehat{\mathbb{A}}_{S}^{n} .
$$

Cayley flatness - five versions - 1
C-flatness: all linear projections $D \rightarrow \mathbb{P}_{s}^{n}$.
Stable C-flatness: all linear projections composed with Veronese embeddings $D \rightarrow \mathbb{P}_{s}^{n}$.

K-flatness: all morphisms $D \rightarrow \mathbb{P}_{s}^{n}$.
Local K-flatness: all local morphisms $D \supset D^{\circ} \rightarrow \mathbb{A}_{S}^{n}$.
Formal K-flatness: all morphisms after all completions

$$
\widehat{D} \rightarrow \widehat{\mathbb{A}}_{S}^{n} .
$$

Conjecture. They are all equivalent.

Cayley flatness - five versions - 2
C-flatness: all linear projections $D \rightarrow \mathbb{P}_{s}^{n}$.
Stable C-flatness: all linear projections composed with
Veronese embeddings $D \rightarrow \mathbb{P}_{s}^{n}$.
K-flatness: all morphisms $D \rightarrow \mathbb{P}_{s}^{n}$.
Local K-flatness: all local morphisms $D \supset D^{\circ} \rightarrow \mathbb{A}_{s}^{n}$.
Formal K-flatness: all morphisms after completion

$$
\widehat{D} \rightarrow \widehat{\mathbb{A}}_{S}^{n} .
$$

Theorem. The red ones are equivalent.

Cayley flatness - five versions - 3
Some subtle points:

- A morphism $D_{s} \rightarrow \mathbb{P}_{s}^{n}$ may not extend to $D \rightarrow \mathbb{P}_{s}^{n}$.

Cayley flatness - five versions - 3
Some subtle points:

- A morphism $D_{s} \rightarrow \mathbb{P}_{s}^{n}$ may not extend to $D \rightarrow \mathbb{P}_{s}^{n}$.
- There is no Noether normalization in families:
$U \rightarrow S$ affine of dim 1, may not be a finite morphism $U \rightarrow \mathbb{A}_{S}^{1}$.

K-flatness - good properties

$g: X \rightarrow S$ projective of pure relative $\operatorname{dim} n$, and $D \subset X$ a relative Mumford divisor.

- flat \Rightarrow K-flat.
- $D \rightarrow S$ is K-flat $\Leftrightarrow D_{A} \rightarrow A$ are K-flat \forall Artinian A.
- if g is smooth, then flat $\Leftrightarrow \mathrm{K}$-flat.
- if D_{s} are normal, then flat $\Leftrightarrow \mathrm{K}$-flat.
- if S is reduced, then Mumford \Leftrightarrow K-flat.

K-flatness - good properties

$g: X \rightarrow S$ projective of pure relative $\operatorname{dim} n$, and $D \subset X$ a relative Mumford divisor.

- flat $\Rightarrow \mathrm{K}$-flat.
- $D \rightarrow S$ is K-flat $\Leftrightarrow D_{A} \rightarrow A$ are K-flat \forall Artinian A.
- if g is smooth, then flat $\Leftrightarrow \mathrm{K}$-flat.
- if D_{s} are normal, then flat $\Leftrightarrow \mathrm{K}$-flat.
- if S is reduced, then Mumford \Leftrightarrow K-flat.
- if D_{i} are K-flat then $\sum D_{i}$ is K-flat.
- D is K-flat $\Leftrightarrow m D$ is K-flat (if $p \nmid m$).
- preserved by linear equivalence.

K-flatness - Bertini theorem

$g: X \rightarrow S$ projective of pure relative $\operatorname{dim} n \geq 3$, and $D \subset X$ a relative Mumford divisor. $H \in|H|$ general, very ample.

K-flatness - Bertini theorem

$g: X \rightarrow S$ projective of pure relative $\operatorname{dim} n \geq 3$, and $D \subset X$ a relative Mumford divisor.
$H \in|H|$ general, very ample.

Theorem (Up-down Bertini theorem)
 D is K-flat iff $\left.D\right|_{H}$ is K-flat.

Main reason: $\operatorname{Pic}\left(\mathbb{A}_{A}^{n} \backslash\{0\}\right)=0$ for $n \geq 3$, A Artinian. (see Lecture 6).

K-flatness - Bertini theorem

$g: X \rightarrow S$ projective of pure relative $\operatorname{dim} n \geq 3$, and $D \subset X$ a relative Mumford divisor. $H \in|H|$ general, very ample.

Theorem (Up-down Bertini theorem)

D is K-flat iff $\left.D\right|_{H}$ is K-flat.
Main reason: $\operatorname{Pic}\left(\mathbb{A}_{A}^{n} \backslash\{0\}\right)=0$ for $n \geq 3$, A Artinian. (see Lecture 6).

Corollary

K-flatness is about divisors on surfaces.

Computing projections - 1
Note:
$\{$ roots of $f(t)\}=\{$ eigenvectors of t. on $k[t] /(f)\}$
Claim. M finite $R[t]$-algebra (or module).
Assume M is free over $R: M=\oplus_{i=1}^{n} e_{i} R$.
Write $t \cdot e_{i}=\sum r_{i j} e_{j}$ with $r_{i j} \in R$.
Then, the equation of projection to Spec $R[t]$ is

$$
\operatorname{det}\left(1_{n} t-\left(r_{i j}\right)\right)=0
$$

Computing projections - 2

We project to Spec $A[[u, v]]$ with A Artinian.
May assume: $M:=\mathcal{O}_{D}$ is

- finite over $A[[u]]$, and
- free over $A((u))$ of rank say n.

So our equation is:

$$
\operatorname{det}\left(1_{n} v-\left(r_{i j}(u)\right)\right)=0 \text {, where } r_{i j}(u) \in A((u)) \text {. }
$$

The projection is

- flat over $A[[u]] \Leftrightarrow$ the equation is in $A[[u, v]]$.

Proof of: K-flat = stable C-flat: slide 1
Using Up-down Bertini theorem
reduces to dimension 1.
Main advantage of dim 1: can ignore high terms:
For $f(u), g(u) \in \mathbb{C}((u))$, we have
$f g \in \mathbb{C}[[u]] \Leftrightarrow\left(f+u^{M}\right)\left(g+u^{M}\right) \in \mathbb{C}[[u]]$ for $M \gg 1$.
2 dim example:

$$
\frac{1}{u-\sin v} \cdot\left(u-\sin v+v^{M}\right) \text { never in } \mathbb{C}[[u, v]]
$$

Proof of: K-flat $=$ stable C-flat: slide 2

Maps of $\mathbb{A}_{u v}^{2}$ to \mathbb{A}_{u}^{1} used for:
C-flatness: $(u, v) \mapsto(u, a u+b v)$.
K-flatness: $(u, v) \mapsto(u, \phi(u, v))$, where ϕ power series,
C-flatness with dth Veronese: $(u, v) \mapsto(u, h(u, v))$, where $\operatorname{deg} h \leq d$.

Lemma. Given a holomorphic $\phi(u, v)$ with matrix $\left(r_{i j}(u)\right)$ there is a polynomial $\phi^{\prime}(u, v)$ with matrix $\left(r_{i j}^{\prime}(u)\right)$, s.t.

$$
r_{i j}(u) \equiv r_{i j}^{\prime}(u) \bmod \left(u^{M}\right)
$$

Corollary.
$\operatorname{det}\left(1_{n} v-\left(r_{i j}\right)\right) \in A[[u, v]] \Leftrightarrow \operatorname{det}\left(1_{n} v-\left(r_{i j}^{\prime}\right)\right) \in A[[u, v]]$

Families of algebraic varieties
Felix Klein Lecture \# 6
János Kollár

Positive characteristic

New phenomena

- Jumps in plurigenera, hence non-flatness of families of canonical models.
- There are too many \mathbb{Q}-Cartier divisors.

Open question from Lecture 3
Version 1. Are the $h^{0}\left(X, \omega_{X}^{m}\right)$ deformation invariant?
Version 2. Is there a natural transformation

$$
\left\{\begin{array}{c}
\text { smooth families } \\
\text { of varieties of } \\
\text { general type }
\end{array}\right\} \Rightarrow\left\{\begin{array}{c}
\text { flat families of } \\
\text { canonical models }
\end{array}\right\} ?
$$

In char p :

- Open for $\operatorname{dim} \geq 3$.
- Fail for pairs (with mild singularities).

Jump in plurigenera 1

$g: X \rightarrow C$ smooth, projective. Fiberwise canonical models:

$$
X_{c} \mapsto X_{c}^{\text {can }}:=\operatorname{Proj} \oplus H^{0}\left(X_{c}, \omega_{X_{c}}^{m}\right) .
$$

Canonical models form flat family iff, for $m \gg 1$, $c \mapsto P_{m}\left(X_{c}\right):=h^{0}\left(X_{c}, \omega_{X_{c}}^{m}\right)$ is constant.

Many known examples where finitely many P_{m} jump: Katsura-Ueno (1985): elliptic surfaces, Suh (2008): ample K

First example with infinitely many P_{m} jump: Brivio (2020): elliptic surfaces (S, Δ).

Jump in plurigenera - plan of example

- jump of $H^{0}\left(S_{c}, \mathcal{O}_{S_{c}}(m)\right)$ for ruled surfaces,
- from S_{c} to 3 -folds with $K_{X_{c}}+\Delta_{c}$ semi-ample and big,
- $X^{\text {can }}:=\operatorname{Proj}_{C} \oplus g_{*} \mathcal{O}_{X}\left(m K_{X / C}+\llcorner m \Delta\lrcorner\right) \rightarrow C$ exists,
- $\left(X_{0}\right)^{\text {can }} \rightarrow\left(X^{\text {can }}\right)_{0}$ is a birational homeomorphism, but purely inseparable over a single curve $\mathbb{P}^{1} \subset\left(X^{\text {can }}\right)_{0}$.

Jump in plurigenera - plan of example

- jump of $H^{0}\left(S_{c}, \mathcal{O}_{S_{c}}(m)\right)$ for ruled surfaces,
- from S_{c} to 3-folds with $K_{X_{c}}+\Delta_{c}$ semi-ample and big,
- $X^{\text {can }}:=\operatorname{Proj}_{C} \oplus g_{*} \mathcal{O}_{X}\left(m K_{X / C}+\llcorner m \Delta\lrcorner\right) \rightarrow C$ exists,
- $\left(X_{0}\right)^{\text {can }} \rightarrow\left(X^{\text {can }}\right)_{0}$ is a birational homeomorphism, but purely inseparable over a single curve $\mathbb{P}^{1} \subset\left(X^{\text {can }}\right)_{0}$.
- Unexpected: X_{0} and $\left(X_{0}\right)^{\text {can }}$ lift to char 0 , so Kodaira vanishing holds on them.
\mathbb{P}^{1}-bundles on E - slide 1
Fix E elliptic curve and $\mathcal{O}_{E} \rightarrow F \rightarrow \mathcal{O}_{E}$ non-split. Get
$\pi: S \rightarrow E: \mathbb{P}^{1}$-bundle with section $D \cong E$.
Note: $\left(D^{2}\right)=0$ and $K_{S} \sim-2 D$.
Claim. $h^{0}\left(S, \mathcal{O}_{S}(m D)\right)=1$ if char $=0$, and

$$
h^{0}\left(S, \mathcal{O}_{S}(p D)\right)=2 \text { if char }=p>0 .
$$

Proof. Let $C \in|m D|$ be irreducible, reduced curve.
Then $\left(C \cdot K_{S}\right)=-2(C \cdot D)=0$. So $p_{a}(C)=1$.
Projection: $\pi_{C}: C \rightarrow E$ finite, so C elliptic.
Key: $\pi_{C}^{*} S$ has 2 sections: C and D. So $\pi_{C}^{*} F$ is split.
$\Leftrightarrow \pi_{C}^{*}: H^{1}\left(E, \mathcal{O}_{E}\right) \rightarrow H^{1}\left(C, \mathcal{O}_{C}\right)$ is zero map.
\mathbb{P}^{1}-bundles on E - slide 2
Char 0: $\frac{1}{\operatorname{deg} \pi}$ Trace splits $\mathcal{O}_{E} \rightarrow \mathcal{O}_{C}$, so

$$
H^{1}\left(E, \mathcal{O}_{E}\right) \hookrightarrow H^{1}\left(C, \mathcal{O}_{C}\right)
$$

Char p : there is a $C \rightarrow E$ of degree p such that

$$
H^{1}\left(E, \mathcal{O}_{E}\right) \rightarrow H^{1}\left(C, \mathcal{O}_{C}\right) \text { is zero map. }
$$

(iff $\operatorname{Pic}(E) \rightarrow \operatorname{Pic}(C)$ is inseparable)
Corollary. $|p D|: S \rightarrow \mathbb{P}^{1}$ is an elliptic surface, (with a wild fiber $p D$).
\mathbb{P}^{1}-bundles on E - slide 3

- Choose $\left\{S_{t}: t \in \mathbb{A}^{1}\right\}$ such that $S_{t} \cong S$ for $t \neq 0$ and $S_{0} \cong E \times \mathbb{P}^{1}$.
We have $\left\{D_{t} \subset S_{t}\right\}$ such that

$$
\operatorname{dim}\left|p D_{t}\right|=1 \text { for } t \neq 0 \text { and } \operatorname{dim}\left|p D_{0}\right|=p
$$

- Set $\Delta:=\frac{1}{n p}$ (sum of $3 n$ general members of $\left.|p D|\right)$.
- Then $K_{S_{t}}+\Delta_{t} \sim_{\mathbb{Q}} D_{t}$.

Conclusion. All sufficiently large (\log) plurigenera of $\left(S_{t}, \Delta_{t}\right)$ jump at $t=0$.

McKernan trick

Start with $\left(S, \Delta_{S}\right)$ and $X:=\operatorname{Proj}_{S}\left(\mathcal{O}_{S}+\mathcal{O}_{S}(1)\right)$
Pull-back: Δ_{X} and $E \subset X$ negative section. H := sum of (at least 3) general positive sections.
Claim. $\left(X, H+E+\Delta_{X}\right)$ is (log) general type, and

$$
\begin{gathered}
H^{0}\left(S, \mathcal{O}_{S}\left(m K_{S}+\left\llcorner m \Delta_{S}\right\lrcorner\right)\right) \\
H^{0}\left(E, \mathcal{O}_{E}\left(m K_{E}+\left\llcorner m \Delta_{E}\right\lrcorner\right)\right)
\end{gathered}
$$

\downarrow (direct summand)

$$
H^{0}\left(X, \mathcal{O}_{X}\left(m K_{X}+m(E+H)+\left\llcorner m \Delta_{X}\right\lrcorner\right)\right) .
$$

Proof: $0 \rightarrow \omega_{X} \rightarrow \omega_{X}(E) \rightarrow \omega_{E} \rightarrow 0$ and \mathbb{C}^{\times}-action.

Jump in plurigenera - conclusion

Set $\Theta:=H_{t}+E_{t}+\Delta_{t}$. We have

$$
\left\{\left(X_{t}, \Theta_{t}\right): t \in \mathbb{A}^{1}\right\} \text { such that }
$$

$\left(X_{t}, \Theta_{t}\right) \rightarrow\left(X_{t}^{\text {can }}, \Theta_{t}^{\text {can }}\right)$ isom off E_{t}, and
induces

$$
\begin{aligned}
& \left|D_{0}\right|: S_{0} \cong E_{0} \rightarrow \mathbb{P}^{1} \text { for } t=0, \text { and } \\
& \left|p D_{t}\right|: S_{t} \cong E_{t} \rightarrow \mathbb{P}^{1} \text { for } t \neq 0 .
\end{aligned}
$$

Thus the flat limit of $\left|p D_{t}\right|$ as $t \rightarrow 0$ is

$$
S_{0} \cong E_{0} \xrightarrow{\left|D_{0}\right|} \mathbb{P}^{1} \xrightarrow{\text { Frob }} \mathbb{P}^{1} .
$$

Note: only X_{0} lifts to char 0 .

Lauritzen-Kovács-Totaro-Bernasconi type examples

Homogeneous spaces $X=X_{t}$ degerate to
$X_{0}:=$ cone over a hyperplane section.
In some cases with non-reduced stabilizer:

- Kodaira vanishing fails on X,
- X_{0} not CM at vertex, and
- does not lift to char 0 .

Strongest examples: $\pi: Y \rightarrow C$ such that

- K_{Y} is π-ample,
- Y_{c} smooth for $c \neq 0$,
- \bar{Y}_{0} has canonical singularities,
- $\bar{Y}_{0} \rightarrow Y_{0}$ is isomorphism, except at a single point,
- dimension \sim twice the characteristic.

Lauritzen-Kovács-Totaro-Bernasconi type examples

Homogeneous spaces $X=X_{t}$ degerate to
$X_{0}:=$ cone over a hyperplane section.
In some cases with non-reduced stabilizer:

- Kodaira vanishing fails on X,
- X_{0} not CM at vertex, and
- does not lift to char 0 .

Strongest examples: $\pi: Y \rightarrow C$ such that

- K_{Y} is π-ample,
- Y_{c} smooth for $c \neq 0$,
- \bar{Y}_{0} has canonical singularities,
- $\bar{Y}_{0} \rightarrow Y_{0}$ is isomorphism, except at a single point,
- dimension \sim twice the characteristic.

Problems occur even in the interior of the moduli space!

Open questions
Main Question. How to define stable families in char p?
Question 2. Surfaces in chars $2,3,5$? For char ≥ 7 :
Patakfalvi (2017), Arvidsson-Bernasconi-Patakfalvi (2023)
Question 3. Plurigenera of smooth 3-folds? (without Δ)
Question 4. Semi-stable reduction? (even for surfaces!)

Difficulty 2 :
There are too many \mathbb{Q}-Cartier divisors

Picard group over $k[\epsilon]$
$U_{A} \rightarrow \operatorname{Spec} A$ flat over $A=k[\epsilon]$

$$
\begin{aligned}
& 0 \rightarrow \mathcal{O}_{U_{0}} \xrightarrow{\epsilon} \mathcal{O}_{U_{A}} \rightarrow \mathcal{O}_{U_{0}} \rightarrow 0 \\
& 0 \rightarrow \mathcal{O}_{U_{0}} \xrightarrow{1+\epsilon} \mathcal{O}_{U_{A}}^{\times} \rightarrow \mathcal{O}_{U_{0}}^{\times} \rightarrow 1 \\
& H^{1}\left(U_{0}, \mathcal{O}_{U_{0}}\right) \rightarrow \operatorname{Pic}\left(U_{A}\right) \rightarrow \operatorname{Pic}\left(U_{0}\right)
\end{aligned}
$$

$\left(x, X_{A}\right) \rightarrow \operatorname{Spec} A$ isolated singularity, $U_{A}:=X_{A} \backslash\{x\}:$

$$
H_{x}^{2}\left(X_{0}, \mathcal{O}_{X_{0}}\right)=H^{1}\left(U_{0}, \mathcal{O}_{U_{0}}\right) \rightarrow \operatorname{Pic}^{\text {loc }}\left(X_{A}\right) \rightarrow \operatorname{Pic}^{\operatorname{loc}}\left(X_{0}\right)
$$

Local Picard group over $k[\epsilon]$

$$
H_{x}^{2}\left(X_{0}, \mathcal{O}_{X_{0}}\right) \rightarrow \operatorname{Pic}^{\operatorname{loc}}\left(X_{A}\right) \rightarrow \operatorname{Pic}^{\operatorname{loc}}\left(X_{0}\right)
$$

Claim. $H_{x}^{2}\left(X_{0}, \mathcal{O}_{X_{0}}\right)$ is

- k^{∞} if $\operatorname{dim} X_{0}=2$,
- 0 if $\operatorname{dim} X_{0} \geq 3$ and CM,
- $k^{\text {finite }}$ if $\operatorname{dim} X_{0} \geq 3$.

Corollary. If $L_{0} \in \operatorname{Pic}^{\text {loc }}\left(X_{0}\right)$ is torsion, then:

- unique torsion lifting if char $k=0$, and
- all liftings torsion if char $k>0$.
K_{X} in local Picard group - typical example
Example. Take $X \subset \mathbb{P}^{5} \times \mathbb{A}^{1}$ such that $X_{0}=$ cone over deg 4 rational normal curve, and $X_{t}=\mathbb{P}^{1} \times \mathbb{P}^{1}($ embedded by $\mathcal{O}(2,1))$.
Then, for $X_{n} \subset \mathbb{P}^{5} \times \operatorname{Spec} k[t] /\left(t^{n+1}\right)$,
- $2 K_{x_{0}}$ is Cartier,
- K_{X} is not \mathbb{Q}-Cartier,
- $K_{X_{1}}$ is not \mathbb{Q}-Cartier if char $k=0$, and
- $K_{X_{n}}$ is \mathbb{Q}-Cartier $\forall n$ if char $k>0$.

Aside: K_{X} in local Picard group - Lee-Nakayama (2018)
$K_{X / C}$ is the only possible \mathbb{Q}-Cartier lifting of $K_{X_{0}}$
Theorem. $X \rightarrow(0, C)$ flat, X_{0} is slc, char $=0$.
$D: \mathbb{Q}$-Cartier divisor such that $D_{0} \sim K_{X_{0}}$.
Then $D \sim K_{X / C}+$ (Cartier divisor).

Moduli consequences of too many \mathbb{Q}-Cartier divisors

Points on \mathbb{P}^{1} - slide 1
Objects over $\bar{k}: \mathbb{P}^{1}$ plus n unordered points.
Objects over k: Smooth, geometrically rational curve, plus a reduced subscheme of length n.

Families: \mathbb{P}^{1}-bundle $P_{S} \rightarrow S$ plus $D \subset P_{S}$, a
\mathbb{Q}-Cartier divisor of degree n over S.
Bases: Reduced only.

Points on \mathbb{P}^{1} - slide 1
Objects over $\bar{k}: \mathbb{P}^{1}$ plus n unordered points.
Objects over k: Smooth, geometrically rational curve, plus a reduced subscheme of length n.

Families: \mathbb{P}^{1}-bundle $P_{S} \rightarrow S$ plus $D \subset P_{S}$, a
\mathbb{Q}-Cartier divisor of degree n over S.
Bases: Reduced only.
Theorem. The categorical moduli space is $\mathrm{M}_{0, n}^{\mathbb{Q}} \cong$ Spec k.

Comments

Note that we assume:
Families: \mathbb{P}^{1}-bundle $P_{S} \rightarrow S$ plus $D \subset P_{S}$, a
Q-Cartier divisor of degree n over S.
Insisting on Cartier would fix the problem here.
However, in higher dimensions we do have non-Cartier limits, so \mathbb{Q}-Cartier is the strongest we can require.

Points on \mathbb{P}^{1} - Descending families

Start with:

- B smooth curve and $D \subset \mathbb{P}^{1} \times B$ degree n Cartier divisor,
- $\pi: B \rightarrow B^{\prime}$ birational with B^{\prime} higher cusps only
(for example $k\left[t^{m}, t^{m+1}\right]$)
New family:
- $\mathbb{P}^{1} \times B^{\prime}$ and $D^{\prime}:=\left(\pi, 1_{P}\right)_{*} D$.

Claim. D^{\prime} is \mathbb{Q}-Cartier if char $=p>0$.
Proof: For $q>m^{2}$ factors as $\mathrm{Frob}_{q}: B \xrightarrow{\pi} B^{\prime} \xrightarrow{\tau} B$.
So $q \cdot D^{\prime}=q \cdot\left(\pi, 1_{P}\right)_{*} D=\left(\tau, 1_{P}\right)^{*} D$.

Points on \mathbb{P}^{1} - Descending families

Start with:

- B smooth curve and $D \subset \mathbb{P}^{1} \times B$ degree n Cartier divisor,
- $\pi: B \rightarrow B^{\prime}$ birational with B^{\prime} higher cusps only
(for example $k\left[t^{m}, t^{m+1}\right]$)
New family:
- $\mathbb{P}^{1} \times B^{\prime}$ and $D^{\prime}:=\left(\pi, 1_{P}\right)_{*} D$.

Claim. D^{\prime} is \mathbb{Q}-Cartier if char $=p>0$.
Proof: For $q>m^{2}$ factors as $\mathrm{Frob}_{q}: B \xrightarrow{\pi} B^{\prime} \xrightarrow{\tau} B$.
So $q \cdot D^{\prime}=q \cdot\left(\pi, 1_{P}\right)_{*} D=\left(\tau, 1_{P}\right)^{*} D$.
Aside. If char $=0$, then D^{\prime} is not* \mathbb{Q}-Cartier

Points on \mathbb{P}^{1} - slide 3

Corollary. Fix a smooth curve B and $h: B \rightarrow \mathrm{M}_{0, n}^{\mathbb{Q}}$. Let B^{\prime} be any curve with higher cusps and normalization $\pi: B \rightarrow B^{\prime}$.
Then h factors as

$$
h: B \xrightarrow{\pi} B^{\prime} \xrightarrow{h^{\prime}} \mathrm{M}_{0, n}^{\mathbb{Q}}
$$

Exercise. Fix Z. If every $B \rightarrow Z$ factors through every $B \rightarrow B^{\prime}$, then $Z=$ Spec k.

Complement. One can do the same with 2-dimensional senimormal bases, using:

$$
k[x]+\left(y^{q}-x\right) k[x, y] \subset k[x, y],
$$

which is senimormal, with normalization $k[x, y]$.

Proposal to solve the \mathbb{Q}-Cartier problem
We have to impose the additional
Assumption: Let $\pi: X \rightarrow S$ be stable and $D \subset X$ a
\mathbb{Q}-Cartier relative Mumford divisor.
Pick $x \in X$ and $s=\pi(x)$. Then:
If $m_{x} \cdot D_{s}$ is Cartier at x, then $m_{x} \cdot D$ is Cartier at x.
Comment. If $p=c h a r$, then $p^{c} m_{x} D$ is Cartier for some c.
Warning. May need adjusting if D_{s} has multiplicities.

