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Motivations

Exemples

S.Piperno

e Aerodynamic: Aeronautics, automobil;

e Hydrodynamic: boat, physiological flows;

Inria, Cardiac Valve, M. Astorino,

EPFL, A.Quarteroni




Motivations

e Modelling physiological flows such as
blood flow in large arteries

Steps:

Physiolocigal problem — Mathematical and numerical problem = Numerical simulation



Motivations

Mathemathical analysis provides
— A mathematical framework (energy spaces, existence, uniqueness...) ;
— A framework to design efficient schemes ;

— Insight on the limit of the model.



Fluid-Structure Interaction

e Fluid: Newtonian, viscous, incompressible

—> Navier-Stokes equations

e Structure: Elastic media, large displacements

— 3D elasticity, plate/shell models, rigid body...

e Coupling conditions at the interface:
— Equality of the velocities
—> Equality of the strain tensor

—> Energy balance at the interface



Mathematical Model

We consider a 2D container whose boundary is made of a 1D elastic rod or
beam.
Fluid Domain:

Q,(t) = {(z,y) €eR?, 2 € (0,L), y € (0,1 +mn(x,t))}.

Fluid:
[ plou+pl(u-VIu—vAu+Vp=f in ,(t),
¢ diva=0 in (1),
L u(0,-) = ug in Q,,,
Structure:

{ psattn - 5axa:tt77 + « aiﬁ o Baac:cn T ’Ya:c:vtn — (Tf)g(l,l,p, 77) n (07 L)7
77(07 ) = o, atn(oa ) — M1,
Boundary conditions:

e u(t,-)=0 on I.



Mathematical Model

Coupling conditions:

e Domain:

Qn(t) = o(n)(2)
e Equality of the velocities:

u(t,z, 1+ n(t,z)) = (0,0, z))" ,z € (0,L).

e Force:

L
/ Ty v = / (—2vD(u) -ng +pnyg) - v Vv,
0 S(t)

with D(u) = (Vu+ (Vu)!)/2 and v(¢t,z) = v(t,z,1+n(t,z)), x € (0, L).



Fluid boundary conditions

e Enclosed cavity
u = O, on Pzn U Fouta

e Inflow-out flow boundary conditions

Uf(uvp) "1 = —Pinl, O Fina
Uf(uap) "Il = —Poyl, O I‘outa
where o f(u,p) = —pI + 2vD(u) denotes the fluid stress tensor, D(u)

stands for the fluid strain tensor, D(u) = z(Vu + (Vu)?), and n denote
the exterior unit normal to the considered boundary.

Note that many other boundary conditions could be imposed for instance
of(u,p) - n-n=—ppy,u-7=0, onl}y,,

o'f(uap)'n'n:_poutau°7-:07 on Fouta



Remarks

e We have formally

(2D(u) -n¢)2 = (Vu-ny)2, on 09Q,(t) \ I'o.

/ D(u)P? = / Vul?.
Q. (1) Q,(t)

e When considering homogeneous Dirichlet boundary conditions or periodic
boundary conditions, the equalities of the velocities and the incompressibility

imply

This condition traduces the preservation of the volume of the fluid cavity.

e The pressure p is not defined up to an additive constant but is uniquelly defi-
ned. When considering homogeneous Dirichlet boundary conditions or periodic
boundary conditions, its average is the Lagrange multiplier associated to the
volume preserving constrain.

and a Korn equatlity



At least formally

ui(z,1+n(x)) =0,

thus
Opur(z, 1+ n(x)) + 0:n(x)0yus(z,1 +n(z)) =0

But, due to the fluid incompressibility we obtain:

_ayUQ(xv 1+ 77(33)) T a:cﬁ(i’?)ayul (33, 1+ 77(33)) =0

Since 5 3
T U1 x U2
(VU) N ( (9yu1 8yu2 )
and n; = \/1+(18 = (—0xm, 1)T we obtain that
1
(Vu)'ny)p = NiERCIE (Oyuz(z, 1+ n(z)) — dzn(x)Oyur(x, 1 +n(z))) = 0.

We then deduce that
/ (Vu)! : Vu = 0.
Qy ()



Even when considering homogeneous Dirichlet boundary conditions or periodic
boundary conditions the pressure is uniquely defined. Indeed, the incompress-
ibility condition together with boundary conditions imply:

L
/ (91577 =0 , Vi>0.
0
Consequently,

/0 (T})s(w, p, ) = 0.

The pressure can be then decomposed, for instance, as

p:p0+ca

where, one can choose to impose

/ Po — 07
Qn(t)

and where ¢ satisfies

()= 7 [ @atupon) = 1 [ ex(otum)) e Lena,0,0)(<0un(r.t) erea)



Mathematical Analysis

Difficulties:

Lack of energy estimates = look for smooth solutions;
Geometrical non linearities:

— lack of regularity of the structure displacement =—- look for smooth
solutions;

— work in non cylindrical time-space domain;
Non linear coupled problem = need to obtain compactness;

Hyperbolic-parabolic coupling = depending on the proof scheme, need
to add additional viscosity;

Added mass effect;
How to deal with contact?

How to obtain global existence of solution?



Energy estimates

e Enclosed cavity, x-periodic boundary conditions, or modified Neumann
boundary conditions

2
u
O'f(ll,p + pf%) n=—pgn, on [y,
[uf*
of(u,p+ PfT) - Poutt, on Loy,

—> Emnergy estimates;

e Neumann boundary conditions = no energy estimates due to the kinetic
energy fluxes at the outlets:

/ uf?
pf u-n
FinUFout 2



Energy Estimates

s d [F
pf/ &;u-u+ﬂf/ (u-V)u-u+2'// D)+ 22 [ (0m)?
0 () e 2 (1 2 dt Jo

+5i/L<aa pyad [fp >2+§i/L<a )2 /L<aa = f-u+/L 0

But
/.

—> Emnergy estimates:

1d

8tu-u+/ (u-Vu-u=-— lul?.
(t () 2dt Jo,

n

ue L>(0,T; L(Q,(t), D(u) e L*(0,T; L (2,(1))),

and
n e Wh*(0,T;L;(0,L)) N L*(0,T; H{ (0, L)),
for o > 0
n€ L*0,T;H(0,L)),
for v >0
Oy € L*(0,T; H (0, L)),
for 6 > 0

O € L=(0,T; Hy (0,L)).



Weak Formulation

t t t
o [ omeern [ [ Vuivesp [ [
0 JQ,(s) 0 JQ,(s) Qy(s)
/ / Db + / / O i) Drab
+7// 88t778b+ﬁ// 01 Oypb
[ e [ [an
?7(3)

V(¢,b) such that div(¢) =0, in Q, (%),
d(t,z,1+n(t,x)) = (0,b(t,z))" on (0,L).



The added mass: a simplified model

(Causin, JEG, Nobile, 2005)

e Solid: string model (infinitesimal displacements)
pO0ud+ Ld=pyx, in X,

* Fluid: fixed fluid domain, no viscosity/convective terms

( ( . f
A =0, i Of —Ap =0, in )
ot op fOu ¢
) divu = 0.7 in Qf < a—n = —p E n = —p 8ttd, on X
u-n=d, on X d op
u-n=0, on Iy 1V on 0, on I
\ p=0, on I . p=0 on Iy




The added mass operator

(—Ap =0, in Qf
0
a—p = —pf&gtd, on X
Fluid: 4 an Solid: p°Oud+ Ld=pig, in X,
p
- = O, on Fl
on
. p=0 on I’

Steklov-Poincaré operator

The operator M : H™2 (%) — Hz(X) defined as: for each g € H2(X) we set

Ma(g) def grw, where g € H*(Q') solves

(—Ag=0, in O
0
9 _ g, on X
) on
dq
— =0 r
In , On 1
\ q=VY, o FQ

is a linear, compact, positive and self-adjoint operator in L?(X).

v

v' From this definition, we have Py = /\/lA(—pfﬁttd) = —,Of./\/lA({)ttd




The added mass etftect

(_Ap =0, in Of
g_p = —p'0yd, on X%
. n
Fluid: < o Solid: P°Oud+Ld=pyy, n ¥, (1)
a— = 0, on Fl
n _ t
\ P = on Iy p|2 - F MA@ttd

i

(p°e + prA)attd +Ld=0, in X 2)

Remark:

» This equation looks like a structure equation, except for the extra “mass” term

» The fluid-structure coupling can be condensed into an extra mass action on the structure
(hence the terminology “added-mass effect”)

e If we try to perform a naive fixed point argument (Fluid+Dirichlet, Struc-
ture+Neumann)to prove existence of solution then it works only in the

case where the mass of the structure is large enough compared to the one
of the fluid.



Numerical evidence

Implicit coupling Explicit coupling

e Instabilities disappear when the solid density is (artificially) increased
e Instabilities are independent of the time step

e The instability is sensitive to the length of the domain



We consider a 2D container whose boundary is made of a 1D elastic rod or
beam.
Fluid Domain:

Q,(t) == {(x,y) €eR*, 2 € (0,L), y € (0,1 +n(z,t))}.

Fluid:
( plou+pf(u-Viu—vAu+Vp=f in Q, (1),
{ divu=0 in €, (1),
\ u(0, ) = ug in €2,
Structure:

psOttn — 00zt + & 8;‘277 — B0zzn — ¥ Ozarn = (I'y)2(u, p,n) in (0, L),
{ n(0,-) = no, 9n(0,-) = m,

Boundary conditions:

e u(t,)=0 onTy.

Coupling conditions:

o u(t,z,1+n(t,x)) = (0,0;n)T on (0,L);

L
) / Ty -v(-,1+n()) da = / (—2vD(u) - ny + pny) - v day Vv,
0 S(t)



Four cases will be considered
(C1) B>0,7y=6=a=0,
PsOun — BOzzn = (Tf)27
(C2) a>0,0>0,6=v=0,
psOutt) = 80uaten + a0y = (Tf)2,

(C3) a>0,vy>0,86=6=0,

ps(‘?tm + « 8;177 - Waxwtn — (Tf)27
(Cs) a>0,y=B=0=0,

psOun + adyn = (Tf)a,
Results

e For the first three cases: existence of strong solutions locally in time, [CG,
Hillairet, Lequeurre, 19].

e For the case (Cg): no collision occurs and there exists a unique global in
time strong solution, [CG, Hillairet, 16].

e For the four cases: existence of weak solution as long as no contact occurs.

e For the case (Cy): existence of a global weak solution "beyond contact",
[Casanova, CG, Hillairet, in progress].



Strong Solutions



Functional spaces of strong solutions
For the fluid:

we H (Qr), VwelLi(Qr), celL?*0,T), VpelL;(Qr),
For the structure:

e In the case (Cq)

ne€ H?*(0,T;L;(0,L))NL>(0,7; H;(0,L)) " Wh>(0,7; H{ (0, L)),

e In the case (Cs)

ne€ H*0,T; H,(0,L)) N L>®(0,T; H}(0, L)) nW">°(0,T; H (0, L)),

e In the case (Cj)

n € H*(0,T;L;(0,L))NL*(0,T; Hy (0, L)),



Steps of the Proof

Write the fluid equations on the reference configuration 2
pr(det Vx,)0w+ps(v-(B,V))v—pudiv((4,V)v)+(B,V)g =0, in Q

with x,(z,y) = (z,y(1 + no(x)) + R(n — no)(z,y) where R is a linear
operator from HE/QJFE(O, L) into Hﬁ2+€(Qo).

Write the problem as a perturbation with respect to a linear problem,
pr(det VX, )0w — pdiv((Ay, V)v) + (By, V)g

= pr(det Vxy,, —det Vx,,)0v — ps(v - (B,V))v
+ div(((Ay, — ApV))v) + ((By, — By)V)g,  in Q.

Study the linear problem with ng € H tt2 (0, L).

Fixed point procedure: the right hand side is small for small time since in
particular ||77—770||Loo(07T;H§>/2+s(0,L)) < T9||77_770||L°°(O,T;Hﬁ2(O,L))ﬂW1a°°(O,T;LE(QO))-



The linear unsteady case

We study the following linear coupled problem (in the case (Cy)):

pr(det Vxp,)0rv — pdiv((Ay,,V)v) + (B,,V)q = f + divh, in O,
div(B,,v) = g, in y,

psOun) — BOren = —V(A,,V)v)ea - e2 + qBy,ea - €2 + hea - ea, on (0, L),
v(z,1) = Omea, on (0, L).

Remark: The right hand side g satisfies the compatibility condition fQo g =
L
fO @tn = 0.



The linear unsteady case

Key steps

We keep the system as a coupled system,

First step: lifting the non homogeneous divergence g keeping the kinematic
boundary condition v(x, 1) = 01 es. It is made possible because of fQo g =
0,

(v,0n) as test functions = energy estimates,

(Oyv, 0nm) as test functions = estimates of the accelerations in L? pro-

. 2
vided that we can control H@meLQ(O,T;LE(QL))a

2
L2(0,T;H} (0))

But we have to estimate pressure terms as

(—0pev, —0rz¢m) as test functions = estimate on ||VO,v||

2
L>(0,T;L2(0,L))"

/ 029 0z By, : div v
Qo

and on ||0.¢n||

Use of the elliptic estimate for the Stokes problem that requires a control
of Oyv in L?(QO) and 0;n in HE/Q(O, L).



Elliptic Result



Elliptic Result

Let b € Hﬂ2(0, L), mingepo. (1 + b(x)) > 0, consider the Stokes problem in

Q= {(z,y) e R*, 2z € (0,L),y € (0,1 +b(z))}

—vAv+Vq = f, inQ,
diveve = g, in ),
v(z,1+b(zx)) = (0,7(z)), =€ (0,L).

The study of the elliptic regularity of (v,q) is equivalent to the one for (z,r)
defined by

z(z,y) =v(z,y(1 +b(x)), r(z,y)=q(x,y(1+b(z))
solution of

—vdiv(ApyV2) + (ByV)r = f, in Qy,

div(Bjz) = g, in Qq,
z(z,1) = (0,n(z)), =€(0,L),
Bng

with By = cof Vg, Ap =

T nd xe(@y) = (2,y(1 + b(2)).



Elliptic Result

Let b € Hﬂ2(0, L), mingepo. (1 + b(x)) > 0, consider the Stokes problem in

Q= {(z,y) e R*, 2z € (0,L),y € (0,1 +b(z))}

—vAv+Vq = f, inQ,
diveve = g, in ),
v(z,1+b(zx)) = (0,7(z)), =€ (0,L).

The study of the elliptic regularity of (v,q) is equivalent to the one for (z,r)
defined by

z(z,y) =v(z,y(1 +b(x)), r(z,y)=q(x,y(1+b(z))
solution of

—vdiv(ApyV2) + (ByV)r = f, in Qy,

div(Bjz) = g, in Qq,
z(z,1) = (0,n(z)), =€(0,L),
Bng

with By = cof Vg, Ap =

T nd xe(@y) = (2,y(1 + b(2)).



Elliptic Result: Idea of the proot

For b € H{(0,L), mingep,z)(1 + b(z)) > 0, if f € L§(Q0), § € Hy(Qo).

L
/ 7 is satisfied
0

n € H;’ / ?(0, L) and if the compatibility condition / g
Qo
then z € H7 (o) and r € H{ (o).

Steps of the Proof:

e Existence a unique of weak solution and estimates with respect to the data
with f € H; *(Q0), g € L2(Q) and 1) € H,/*(0, L).
Key arguments:
— Ay is coercive, Ay, > A1,

— By is invertible.



Elliptic Result: Idea of the proot

e Regularity estimates.

Key arguments:

— Differentiate the equation with respect to x. (9,2, 0,7) is solution of

—vdiv(Ay VO, 2) + (ByV)0yr = 0,f +vdiv(0,4,Vz) — (0, ByV)r, in Qo,
div(Bj0,z) = 0,5 —div(0,Biz), in Q,
O:z(x,1) = (0,0.n(x)), =€ (0,L),

— Use the previous step together with
X 8:5141) S LOO(Ov 17 HHL(O, L)))
« div(0, A Vz) € Hy *(Q), div(0.Bjz) =8,B}:Vz e L;(Q),

. 1/2 1/2
o [ldiv (0= A6Y)2) 112 0y < 10246V 2] 12(020) < K2 575 0 102217



Key Ingredients

Obtain elliptic results for the Stokes problem;
Control the geometrical terms;

Fill the gap created by the parabolic-hyperbolic coupling = use the
damping coming from the fluid;

Avoid the added mass effect = keep the problem as a coupled system or
decouple it in a proper way;



Other results

e |H. Beirao Da Veiga, 04| Existence of strong solutions for a 2D fluid, locally
in time, for small data

o |J. Lequeurre, 10, 12| Existence locally in time of strong solutions for 2D
or 3D fluid coupled with a plate or a membrane with additional viscosity
on the structure

Idea: Decouple and use the regularity of the solution of each sub—problem
—> Added Mass effect



Sketch of the proot of J. Lequeurre

Write the fluid equations in the reference configuration:

Fluid:
( pfou—vAu+ Vp = Fy(u,p) in €,
¢ divu = Gy (u) in €,
L u(0,-) =uo in Q,
Structure:

( p°Oun + 043;177 — B0zan — 7001
=p+ (T))(u,p))2 in w= (0, L),

<
N = % = 0 on Ow,

77(07 ) = Mo, atn<07 ) =M1,

\

Coupling conditions: Equality of the velocities:

u(t,z,1) = (0,9(t,z))" ,z € w.



Steps

e Study of the linear problem by decoupling the fluid and the structure. But
first:

— Lifting of the non homogeneous divergence problem. Works well since
fQ Gp(u) =0

— Split the fluid pressure and velocity in two parts, one of which will
be treated implicitly.

e Prove that the non linear terms are small, for small enough time.



Fluid:

Define u, as u, = V60

Define p, as
{ Ap, = div

Ops
817?1 = —psOun+ fn

Define (u, p.) as

( pTOu. — vAuU, + Vp, = I1(f),
< divu, = 0,

u. -n=20

U, 7= —Uu,-T,

Structure:
( (:08 + pr)attn + 043?277 - 55m77 - 78:1@77 = pe + H Inw,

_On
{77 on
77(07 ) — To, 87577(07 ) =M,

= 0 on Jw,

\

Ref: [J.-P. Raymond|



Global existence of strong solutions



Global existence of strong
solution

Questions:

e Either we are able to give sense to the solution after "collision"?

e Or we can prove that no collision occur?

Collision in the rigid body case |Starovoitov|, |San Martin et al|, [Hillairet|,
|Hillairet, Takahashi|, |Gérard-Varet, Hillairet...

e 2D: no contact for weak solutions and smooth rigid body [Hillairet|

e 3D: no contact for weak solutions and smooth rigid body, and contact
between the ball and the boundary of the cavity implies blow up of strong
solutions |Hillairet, Takahashi|

e 2D: body with C** « < 1/2 boundary, contact is possible
|Gérard-Varet, Hillairet|



No-collision and Global
Existence Result

We consider the case (C3), namely a beam in flexion with additional viscosity.
We know that the exists of a unique strong solution locally in time, s. t.

w € L*(0,T; H (2 (t)) N H (0, T; L (2(1)))
p € L*(0, T Hy (2(1)))
n € H*(0,T; L (0, L)) N L*(0,T; Hy (0, L))
The solution blows up in finite time if and only if the quantity

1
C(t) := sup
( ) xE[O,l]h(xat)

L
‘|‘ / (Oé|axxa:h(aj7t>‘2 —|_ fY'atxh(x’t)‘Q) dSC
0

L  ph(xz,t)
+ / / p|Vu(z,y,t)|*dedy
0 0

with h = 1 + n, blows up in finite time.



No-collision Result

h e L>*(0,T; H{ (0, L))
/ o
- 0. @)
o h

Idea: write h(z) = h(zg) + f;o(s — )0z h(s)ds.

—> prevents contact;

To obtain this additional estimate we need a > 0 and v > 0.
—> the elliptic regularity result holds true

—> we can prove the existence of strong solution on any time interval [0, T'].



Simplified model

8ttp - Baa:a:p + « aa:a::m:p -7 axa:tp = (, (1)
Oip = O [:03890(1] ; (2)

First, multiplying (1) by 0;p and combining with (2) multiplied by ¢ yields:

1d 1 1
2dt |/, 0
—> LEmnergy estimates

Then, we multiply (1) by —0..p. Integration by parts yields, applying (2) to
compute 9,[p>0,q]:

d

1 1
0 0

1 1 1
1 3 1 1 O p
/0 2 Jo p? 2Jo p?
Finally, we obtain:

d 1 1 1 1 1 1
4 [ / —(ﬂampm—)— / atpamp]+ / (B10s0pl? + lDnnapl?) = / papl?.
de | Jo 2 p 0 0 0



Simplified problem

The uniform lower bound of p uniformly in time and the dissipation estimate
leads to

T
sup (107 0lzo) + [ lalgon < Co.

t€(0,T)

We can now multiply the structure equation by —0;,.p. This yields after inte-
gration by parts:

1
2dt [/ Ol +O“awmp\2+5\3mﬂ\2] +7/ Ot p|® = / @Otz p.
0

Because of the H!-bound on ¢, we obtain a global regularity estimate:

T
sup (o0 + 1001y ) + [ 1001z 0.y < Co.
te(0,7) H : 0 f



Idea of the proof: each estimate is done on the system written is the deformed
configuration

e Energy estimate — Test functions: (u,d:n).
= w € L*(0,T; Hy (Qy (1)) N L>(0, T L (2 (1)),
n € L>(0,T; H (0, L)) N Wh>(0,T; LZ(0, L)) N H*(0,T; H (0, L)).

e Distance estimate - Choice of appropriate test functions:

w = V(8,1 x<%n>>, where x(t) = t3(3 — 2t)

\ . g

v

and .
4= Oy / 8,5
0
— w(t,z, 1 +n(r)) = Own(t, ).
Thus:

L L
/ Structure equation Xd,,n = / (Trea) - €3 Oz
0 0

7

-~

to be estimated

:/ hu - w + v Vu:Vw—l—/ (uV)uw
Qﬂ (t) Qn (t) Qﬁ (t)

~—

e Tf(w,q)n-u—/. (vAw — Vq)u

J 082y (1) Qn(t)



'1'here exists a constant Cy depending only on initial data for which:

sup (VIR(t, Mz 0,0y + 10718z 0.1
t€(0,T) f

T
+a/0 It ) 33 0,1yt < Co(1+T)

Remarks:

o Gives an estimate of 9,sh in L?(0,T x (0, L)) (because a > 0),

e Need to control d,2h in L*°(0, L) (thus o > 0),

e Need to have dissipation in the beam equation (thus v > 0).



Regularity Estimates

e Natural fluid-structure test functions (O;u, 0¢n).

But these are not appropriate test functions (unlike for the linear problem)

— take into account the domain motion
— need of some additional regularity of the structure displacement

e Additional estimate for the structure: Structure test function: —0;,.n

At this step, need to have an elliptic estimate.



Choice of the tests functions:

vi=0,u+A -Vu—u-VA

with

e A is divergence free,

o VA € LZ(Qr) and V2A € LZ(Qr) with

IA(, 1)
HVA<7t)
IV2A(- )

for a.e. t € (0,7),

A A

2
Ly
2
Ly

2
L

(25)
(£29)

(£29)

A IA

VA

e A=uand bA =0o0ny=h(zx,t),

° A:OonyzO.

L2(0,L) s
H}(0,L) >

HZ(0,L) »



e To estimate the convention terms — need of an elliptic estimate;

e Associated structure test function: Oy

L
— Need to control the term / 1020,m|?
0

— Need to obtain an additional estimate for the structure part.
Test function: —0,,0:n

—> need to control the applied load
—> elliptic estimate.



Weak solutions



Weak solutions

e Lixistence of weak solution as long as the structure does not touch the bot-
tom of the fluid cavity: the case of the wave equation with and without
damping (8 > 0,7 > 0);

e Existence of weak solution "beyong contact": the case of the beam equa-
tion without damping (a > 0).



Definition of the functional spaces

Note that the following continuous injection holds :
Wtee(0,T; L*(0, L)) N L°°(0,T; H' (0, L)) — C%*=%([0,T]; H?(0, L)),
for all 0 < 8 < 1. In particular,
W0, T; L2(0, L)) N L*°(0,T; H'(0, L)) — C%*([0,T]; C%'/2=%(0, L)),

forall 0 < 6 <1/2.
We define :

L2(0, T3 H (2 (1)) = {v € LA(@), Vo € L3(Qy) },

, , ——L*(0,T;H" (2, (t)))
L (07T§ Ho (Qn(t)» — D(Qn> y

Vs = {'v e C! ((AZ,,?), divo =0, v =0 on (0,7) XFO};

v, = V_nLQ(O’T;Hl (©24(1))) 7

with Q, = U{t} x Q, ().



Trace on the interface

The trace of the fluid velocity u on the moving interface is not defined since the

interface is not lipschitz.
But u(t,z,1 + n(t,x)) is well defined in L?(0, L) for a. e. t.

Indeed, let v € H'(Q,(t)), v =0 on I.

L
lo(e, 1+t 2) 2200 = / (o(z, 1+ n(t, )’ dz
0

L 14n(t,z) 2
= / / 0.v(z,u)du | dx
0 0



Lifting of the structure test functions

Let b € H;(0,L). We define

(0,6)1 in Q,(t) \ Cq
R(0,b)! in C,

vV =

then v belongs to H'(£,(¢)) and div(v) = 0.

Extention of fluid test functions

Let v be such that div(v) = 0 and v(z,1 + n(z)) = (0,b(z))? on (0,L). We
define

v in Q, ()

(07 b)T in B \ Qﬁ(t)

Then ¥V belongs to H!(B) and div(v) = 0.

VvV =



Existence theorem

We assume that

ug € L*(Qyy)sm0 € Hy (0, L), € L*(w)

and
min(1 + 7o) > 0,divug = 0 in £,
up -n =0 in To, vy, (a0) = (0,m)"

/OL m(x) = 0.

Result : Let fe L? ((0,+00) x R?), ge L? ((0,+00) x w), there exists at least

loc loc
one weak solution as long as the structure does not touch the bottom of the

fluid cavity.

‘N ON W,



Weak formulation

o u(t,z,14+n(t,z)) = (0,0t )T, (t,z) € [0,T] x (0, L),

o div(u) =0 in Qy = U,co ) {t} X ().
e for all (¢,b) such that

o ¢(t,x, 1+t z)) = (0,0,b(t,x))", (t,2) € [0,T] x (0, L),
o div(¢) =0 in £,.

we have, for a. e. ¢

/ﬂnu) u(t)'qb(t)_/ot /ﬂn<s> ooty /ot /ﬂms) e v¢+/0t /m(s)(u‘v)u'q5
— /Ot /OL(ﬁtn)Qb+ /OL O (t) b(t) — /Ot /OL 8m(9tb—|—7/0t /OL Opem O b+
+5/0t/0L0x776xb
=/Ot/Qn(t)f-¢+/Ot/OLg b+/ﬂn0uo¢(0)+/0L7715(0)



Weak formulation of the approximated problems

/ot/ *(s)ﬁtus P +V/ /ns(s)
+2//*(S)<u:-v>u€-¢€—2//*(S)<uz-v>¢€-u€

// 8t77€8t77€b+// Gtmgb—FW// Oy Ne Ob
o %ﬁe“—//*@f o[ f o

V(¢.,b) such that div(¢
¢ (t,x, 1+ 7. (t,:c)) — (O,b(t,x)) on (0, L).




Weak formulation of the linearized-approximated problems

' '
// (‘9tu8-¢€+y// Vu
0 95*(8) Qé* (S)
/ / Vu. . — / / V)6, - u.
ch* (S) Q5* S)

// 8757768,55*194—// 8tt775b+7// Oy Ne Oy b
o] @ws“—//wf o[ f o

V(¢.,b) such that div(¢
b (t,z,1+02(L, 33)) = (0, b(t,x))" on (0, L).



Sketch of the proof

e Galerkin method
Fluid test functions: {v € H},div(v) = 0} + a lifting of structure test
functions — existence for the linearized-approximated problem

e Fixed point procedure
(v,0) — (v}, 6) = (u.,n.) — existence for the approximated problem.
e c — 0, u. —u, n. - n — existence for the initial problem.

In order to pass to the limit in the equation one needs a compactness result

Lemma. Let T > 0 be such that miny 7«0,z (1 +71:) > o > 0. For every
h >0, h < hg

T T L
/ / peli —wo|? + / / (Oun- — B )> < OV,
0 B 0 0

T
/ / ‘pé‘ﬁs T p;ﬁa_P S C\/E,
0 B

where p. denotes the characteristic function of {,«(t) and v(t) = v(t — h).

and



Linearized-appromimated problem

We write the full coupled weak formulation in the reference configuration
thanks to the transformation:

Ge(t,x,y) = (z,y(L+0:(L, x)))
—
—Au, — — div (A.Vu. o ¢.),
Oty — Oyue 0 poJ. — w.(BLV)u. o ¢....

Construction of a Galerkin Basis

e For the structure: (&;); Galerkin basis associated to the space

L
{beH&(o,L),s.t./ b=0}.
0

e For the fluid:
(¥); a Galerkin basis of {v € H} (), s.t.div (Bl v) =0}

3

+ 9! lifting of the structure test functions such that
div (B.yl) = 0.

Remark: The discrete system reduces to a system on the fluid degree of
freedom.



Approximated problem

Choice of test functions for the compactness result to pass to the limit as € goes

to zero:
t t

. = (ﬁs)a(s)dsa b= 8t775(s)ds.
t—h t—h

where
with
o>1+CVh.

Remark: If v is divergence free, v, is also divergence free.



Main points:
e Pass to the limit in the domain sequence

e Choose test functions independent of ¢



And v — 07

Result: When v goes to zero (u., n,) converge towards (u,n), weak solution of
the coupled problem: Nawvier-Stokes/ Fuler Bernoulli. We obtain the existence
of at least one weak solution as long as the plate does not touch the bottom of

the fluid cavity.
Idea: Split the low and high frequencies of the structure velocity
—> Low frequencies controlled as previously

—> High frequencies controlled thanks to the dissipation coming from the fluid
and since

u(t,z,1+n(t z)) = (0,0n(t,x))’ € L*(0,T; H*(w)), for some s > 0



Sketch of the proof

e (T,)~ bounded from below.
e Compactness

Lemma. Let T > 0 be such that minyg r1x0,r)(1 +1,) = a > 0.Then when h
goes to 0, we have

T T
[ [ olu =i [ @ —omr7 —o,
0 B 0 w

T
/ / [Py Ty — p;ﬁ;|2 — 0,
0 B

Choice of the tests functions

and

6= | (= RUT=T )@l ), (9)ds. b= [ Ty, @10, (5))ds.



Weak solutions with contact for a
beam without viscosity

Consider a > 0 and v > 0 for which we have existence of global strong solution.

e QQuestion: Can we pass to the limit in the weak formulation when v goes
to zero to obtain existence of weak solutions?

e Difficulties:

— Non smooth not connected fluid domain;
— Define a functional framework compatible with contact;
— Test fonctions depend on « and at the limit on contact point;

— Compactness of the velocities;



Variational Formulation

t
pf/ Uy (1) - wo (8) — Pf/ / Uy - Opwy + (Uy - V)Wwsy - uy
Tha(t) They(s)

/ 815777 / / 8t7778tb +M// V’UW V’UJW
Fhoy(s)
+5// 021~ O0zby +a// Oy Oy +v// Ot 1Oz by

—Pf/fh u’ w7(0)+Ps/0 70, (0).

0

with w(x7 1+ 777(55)) = (07 b’v(x))T

Functional Framework

Kh| ={w € L?(Q),div w=0in Q,w=01in (0,L)x(—1,0),w = bey, for y > 1+n(x)}

X[h] = {(w,b) € K[h] x L§ o(0, L) [ w2 g, (ary = 0}
Compactness
e Build a "regular” displacement n < 1, Vy;
e Obtain compactness on projection of the velocities on X[h];

e Build good approximations in Hf (£2)x with o > 0 of (w,, b,).



Let h € H{(0,L) with h > 0 and a > 0.
Define
h, :=[h—alt.

—

Then h,, € CﬁO(O, L) and, given k € (0,1/2), there exists a constant C' indepen-
dent of o and A for which:

h 1+k h 1,00 < C h 2 s
||—aHHﬁ+ (0,L) + ”_O‘”Wﬁ (0,L) = || HHﬂ (0,L)

b, — h”Wﬁl,OO(07L) <a+ sup B (z)].
{z€[0,L]|h(x)<a}

Fix 0 < k < 3. Let h and h belong to H'**(0, L) N W'>(0, L) with 0 < h <
h < M —1 and set

A= Hh”Hﬂl“(o,L) + HhHWﬁLOO(o,L) + HQHHﬁH“(o,L) + Hﬁ”wﬁlm(o,L)'
Let s € [0,k/2) and (w,7n) € X?|h] enjoying the further property:
W\ r- € Hy (92;,)
Then, the following estimate holds true:
P17 (w, 1) = (w, )| x> < Calllle = Ry o L)W o)

with C4(z) — 0 as ¢ — 0.



L? compactness
Study the difference

T T L T T L
S:Pf/ / Ipvﬂ7|2+ps/ / |0y |* — Pf/ / Ipﬂ!2+ps/ / |0,m)?
0 B 0 0 0 B 0 0

=Y T +Ty - Ty
k

with
T1k :/ ((Pfyﬁmaﬂh)a (ﬁmaﬂh) - IP’S[Q(S,,C](EW,&%))

I, X0

1t = [ (0.0, (@00 — P [ ) (. 00m) )

Iy X0

T;f:/ (P[hé,k](ﬂyﬁ%3;5777),1?3[&57,{:](%%8tnv)>(XS),’XS

Iy
o <P[h5,k](pﬁv 61577)7 P° [hé,k](ﬁa 81577>>(XS)’,X5



Existence results

Rigid Structure:

e Weak solutions:

— B. Desjardins, M. Esteban: 2D /3D

— C. Conca, J. San Martin, M. Tucsnak: 2D, one rigid body
— K.-H. Hoftfman, V. Starovoitov: 2D

— J. San Martin, V. Starovoitov, M. Tuscnak: 2D, contacts

— M. Gunzburger, H-C. Lee, A. Seregin: 3D, one rigid body

e Strong solutions:

— C.G, Y. Maday: 2D/3D, small time, inertia of the solid large enough
— T. Takahashi, M. Tucsnak: 2D /3D, one rigid body



Beam /Plate/Membrane /Shell

e Weak solutions (as long as no collision occur):

— [Chambolle-Desjardins-Esteban-CG, 05]: Dirichlet boundary condi-
tions, 3D, a > 0,7 > 0 and 0 = 8 = 0. The proof applies also for
B>0,v>0,0 =a=0in 2D case.

CG, 09]: Dirichlet boundary conditions, 3D, @« > 0and y =9 = =

0. The proof applies also for 8 >0, vy =0 =a =0 in 2D case.

Muha-Canic, 13, 15]: a > 0, v > 0, Generalized Neumann boundary

conditions;

Lengeler-Ruzicka, 14| : Linear Shell model (a > 0);

‘Muha-Schwarzacher| : Non linear Shell model.

e Strong solutions (small time or small data):

— |[Da Veiga, 04|, [Lequeurre, 11, 13|, [Casanova)] : v > 0, 8 = 0, Dirich-
let, periodic boundary conditions or modified Neumann boundary
conditions in the 2D case;

— Steady state case, enclosed cavity: [CG, 98];
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e Weak solutions:

— B. Desjardinj\sf, M. Esteban, C. G., P. Le Tallec: Linearized elasticity,
d(t,z) = 3,21 ai(t)di().

— M. Boulakia: large displacement—small strain, u = 7 + (R — )Gz +
Rd.

e Strong solutions:
— C. G., Y. Maday, P. Métier: large displacement—small strain, u =
7+ (R — I)Gz 4+ Rd, nonlinear model.
— M. Boulakia, E. Schwindt, T. Takahashi : linearized elasticity, d (¢, z) =

Z;N:l a;(t)pi(x).
Elastic Solid

e Strong solutions:

— D. Coutand, S. Shkoller: 3D Saint-Venant Kirschhoff media/ 3D
Fluid/Gap of regularity

— J.-P. Raymond, M. Vanninathan: 3D Saint-Venant Kirschhoff me-
dia/ 3D Fluid/ Flat interface

— M. Boulakia, S. Guerrero, T. Takahashi 3D linearized elastic body in
a 3D Fluid



Concluding Remarks

Can we have contact in the case a= 07 y=07

If there is contact do we have uniqueness of the solution?
Generalization to other boundary conditions at the outlets?
Consider the longitudinal displacement of the elastic structure.

What about the 3D case?



