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Foreword



NSEs

Incompressible Navier-Stokes equations

divv = 0

∂v

∂t
+ div(v ⊗ v) = −∇p+ ν∆v

Unknowns: (v = (v1, v2, v3), p) ν > 0

(a⊗ b)ij := aibj

div(v ⊗ v)i =

3∑
j=1

∂(vivj)

∂xj
=

3∑
j=1

vj
∂vi
∂xj

= v · ∇vi
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NSEs - rewritten
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Physics vs Mathematics

• NSEs (physics): Navier (1821), St. Venant (1843), Poisson (1843),
Stokes (1845)

• NSEs (mathematics): Oseen (1921), Leray (1934) 2d vs 3d,
Padula (1986), DiPerna (1980-1989), PL Lions (1998), Feireisl
(2004)

• Existence and smoothness of the Navier-Stokes equation (2000)

• Formulation of the mathematical models (much) ahead of the
analysis of relevant PDEs problems
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• Non-Newtonian fluid is a fluid that is not Newtonian

• non-Newtonian fluids/structured fluids/complex fluids

• Are there Non-Newtonian fluids?
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Complex fluids - examples



Asphalt concrete Bovine eye

• composite material
• consists of mineral aggregate bound
with asphalt binder and compacted

• 2% of air voids ⇒ almost
incompressible

• viscoelastic behavior (Monismoth,
Secor 1962)

• transparent, colorless, gelatinous
• 98% of water, NaCl, hyaluronan
• maintains the shape of the eye,
keeps a clear path to the retina

• viscoelastic behavior
(Sharif-Kashani et al. 2011)



Asphalt concrete (cross-section through a sample 10cm x 5cm, grayscale image)



Materials - solid-like and fluid-like

Year Event
1930 Plug trimmed off
1938 1st drop
1947 2nd drop
1954 3rd drop
1962 4th drop
1970 5th drop
1979 6th drop
1988 7th drop
2000 8th drop
2014 9th drop
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Non-Newtonian fluids and phenomena



Departures from behavior of Newtonian fluids

Non-Newtonian phenomena

1 Nonlinear relation between the stress and the shear rate

2 The presence of activation or deactivation criteria

3 The presence of the normal stress differences in simple shear flows

4 Stress Relaxation

5 (Nonlinear) Creep

25. června 2018 1 / 10



Viscosity

Definition

Coefficient of proportionality between the shear stress and the shear-rate

Simple shear flow: v(x , y , z) =





v(y)
0
0



 D = 1
2





0 v ′ 0
v ′ 0 0
0 0 0





Newton (1687):

The resistance arising from the want of lubricity in parts of the

fluid, other things being equal, is proportional to the velocity with

which the parts of the fluid are separated from one another.

Sxy = µv ′(y)

Experiments confirm the dependence on the shear-rate, pressure, concentration,

. . .

g(Sxy , v
′(y)) = 0

25. června 2018 2 / 10



Nonlinear relation between stress and shear-rate

Generalized viscosity

µg (κ) :=
Sxy (κ)

κ
where κ = v ′

Shear thinning/thickening Generalized viscosity

1 Viscosity increases with increasing shear-rate (shear thickening)

2 Viscosity decreases with increasing shear-rate (shear thinning)

3 Constant viscosity (Newtonian fluid - provided that the fluid does not
exhibit other effects)

25. června 2018 3 / 10



Presence of activation criteria (such as yield stress)

Bingham and Herschel-Bulkley fluids

25. června 2018 4 / 10



Normal stress differences in simple shear flow

v(x , y , z) =





v(y)
0
0





For the model T = −pI+ ν(p, |D|2)D

T11 − T22 = −p + p = 0

T22 − T33 = −p + p = 0

The presence of non-zero normal stress differences
in simple shear flows is associated with the effects
such as

Die swell

Delayed die swell

Rod climbing

25. června 2018 5 / 10



Stress relaxation

Sudden jump discontinuous change of deformation

Response at stress relaxation test for linear spring and linear dashpot

25. června 2018 6 / 10



Stress relaxation

Response at stress relaxation test for natural materials: solid-like response
(left) and fluid-like response (right)

25. června 2018 7 / 10



(Non-linear) creep

Sudden jump discontinuous change in the shear stress

Response at creep test for linear spring and linear dashpot

25. června 2018 8 / 10



(Non-linear) creep

Response at creep test for natural materials: solid-like response (left) and
fluid-like response (right)

25. června 2018 9 / 10



Selected areas of application

Newtonian fluid is exception

1 Food materials such as milk, oil, tomato products, products of
granular type (such as rice)

2 Chemical suspensions, gels, paints, ....

3 Biological materials such as blood and synovial fluid

4 Geophysical materials such as rocks, soil, sand, clay, lava, the earth’s
mantle, glacier

25. června 2018 10 / 10
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The approach



Wheel tracker test of asphalt concrete

• asphalt concrete exhibits
viscoelastic behavior

• “torture test” to check
the abilities of the
material

• done by the group of J.
Murali Krishnan (IITM)

• brick dimensions
30× 13.8× 5 cm

• time demanding
simulation by K. Tůma

• 800 kPa, speed 1 km/h,
8 960 elements

• pressure distribution,
deformation scaled 100×



Approach

• Continuum mechanics and thermodynamics - (microscopic or
mesoscopic approach is impossible due to complicated
microstructure and chemical processes involved)

• Experiment (good access) - Computer simulation (capable of
performing in some cases)

• Steps
• Observation/Experiment
• One-dimensional (intuitively derived) mathematical model
• Design of three-dimensional models
• Identification of boundary conditions
• Simulations

• Goal: real-world problem (as a highway Prague-Liberec) vs
digital twin
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Role of mathematics and mathematical physics

Aims

• How to describe complex phenomena?
• How to quantify the difference between the real process and
outcome of simulation?

• How to achieve efficient computation?



Recent approaches in continuum thermodynamics

1 Implicit constitutive theory
2 Knowledge of mechanisms how the material stores the energy

and how the material dissipates the energy is sufficient to
determine the constitutive equations and boundary conditions

3 Concept of natural configuration associated to the current
configuration of the body

4 Consequences towards the mixture theory

K.R. Rajagopal (since 1993)



Role and goals of analysis

Guaranteed error between the computed solution and the solution of
infinite-dimensional PDE problem

1 proper definition of the infinite-dimensional object we approximate:
definition of solution and its properties

2 definition/choice of appropriate distance function or measure
associated to the considered problem

3 methods of discretization and their properties

4 methods of linearization and their properties

5 methods of solving linear problems and their properties

6 stability (with respect to perturbations - rounding errors, ....,
stationary/periodic solution)

7 connections between infinite-dimensional problems and huge yet
finite-dimensional problems

Z. Strakoš (since 2006)
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Highlights of Lecture 1



NSEs
Incompressible Navier-Stokes equations

divv = 0

∂v

∂t
+ div(v ⊗ v) = −∇p+ div S

S = 2νD

Unknowns: (v, p,S) ν > 0, density

I NSEs (physics): Navier (1821), St. Venant (1843), Poisson (1843),
Stokes (1845)

I NSEs (mathematics):

• Oseen (1921), Leray (1933/34) 2d vs 3d, Hopf (1951), Kiselev,
Ladyzhenskaya (1957), Caffarelli, Kohn, Nirenberg (1982)

• DiPerna (1980-1989), PL Lions (1998), Feireisl (2004)

I Existence and smoothness of the Navier-Stokes equation (2000)

I Leray’s program: long time nad large data existence of (weak) solution
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Viscous fluids and visco-elastic fluids



Unsteady flows of incompressible fluids

Governing equations Ω ⊂ R3

divv = 0

∂v

∂t
+ div(v ⊗ v) = −∇p+ div S

S = ST

}
in (0, T )× Ω

v · n = 0 } on (0, T )× ∂Ω

v(0, ·) = v0 } in Ω

Energy balance A : B :=
∑3
i,j=1AijBij

1
2
∂|v|2
∂t + div

(
|v|2

2 v + pv − Sv
)

+ S : ∇v = 0

d

dt

ˆ
Ω

|v|2 + 2

ˆ
Ω

S : ∇v +

ˆ
∂Ω

(|v|2 + 2p)(v · n)− 2S : (v ⊗ n) = 0
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Internal flows

ˆ
∂Ω

(−S) : (v ⊗ n) =

ˆ
∂Ω

(−S)n · v =

ˆ
∂Ω

(
(−S)v

)
τ
· vτ

Boundary conditions

• v · n = 0 on ∂Ω

• constitutive equation involving vτ and/or (−Sn)τ

s := (−Sn)τ zτ := z− (z · n)n

n

s

(Sn)τ

Sn

Ω

∂Ωˆ
∂Ω

(−S) : (v ⊗ n) =

ˆ
∂Ω

(−S)n · v =

ˆ
∂Ω

(
(−Sn

)
τ
· vτ

vτ = 0 no slip boundary condition
s = γ∗vτ with γ∗ > 0 Navier’s slip boundary condition
s = 0 (perfect) slip boundary condition



Energy estimates and constitutive equations
• Governing equations Ω ⊂ R3

divv = 0

∂v

∂t
+ div(v ⊗ v) = −∇p+ div S, S = ST

}
in (0, T )× Ω

v · n = 0 } on (0, T )× ∂Ω

v(0, ·) = v0 } in Ω

• Energy equality valid for t ∈ (0, T ] D := 1
2

(
∇v + (∇v)T

)
‖v(t)‖22 + 2

ˆ t

0

ˆ
Ω

S : D + 2

ˆ t

0

ˆ
∂Ω

s · vτ = ‖v0‖22

• To close the system

we add a material dependent relation involving S and D

we add a material dependent relation involving s and vτ

Constitutive equations
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Classes of constitutive equations

divv = 0

∂v

∂t
+ div(v ⊗ v) = −∇p+ div S, S = ST

(1) G(S,D) = O
implicit algebraic equations

(2) G(
∗
S,S,

∗
D,D) = O

∗
A an objective time derivative

rate type viscoelastic fluids

(3) G(
∗
S,S,

∗
D,D)−∆S = O

rate type viscoelastic fluids with stress diffusion

(4) G(
∗∗
S ,
∗
S,S,

∗∗
D,
∗
D,D) = O

higher order rate type viscoelastic fluids



G(S,D) = O

Euler/limiting
shear-rate

limiting shear-
rate

rigid body

Euler/shear-
thickening

shear-
thickening

rigid/shear-
thickening

Euler/Navier-
Stokes

Navier-Stokes Bingham =
rigid/Navier-
Stokes

Euler/shear-
thinning

shear-thinning rigid/shear-
thinning

Euler limiting shear
stress

perfect plastic

|D| ≤ δ∗ ⇐⇒ S = O no activation |S| ≤ σ∗ ⇐⇒ D = O

Summary of systematic classification of fluid-like responses
with corresponding |S| vs |D| diagrams.



no-slip

slip/Navier’s
slip

Navier’s slip stick-slip

slip

|vτ | ≤ δ∗ ⇐⇒ s = 0 no activation |s| ≤ s∗ ⇐⇒ vτ = 0

Summary of systematic classification of boundary conditions
with corresponding |s| vs |vτ | diagrams.



Long time and large data existence theory

Ladyzhenskaya (1967-72), JL Lions (1969), Málek, Nečas, Ružička
(1993-2000), Frehse, Málek, Steinhauer (1996-2003)

L. Diening, M. Růžička, J. Wolf, Existence of weak solutions for unsteady motions of generalized
Newtonian fluids, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 9 (2010) 1–46.

M. Bulíček, P. Gwiazda, J. Málek, A. Świerczewska-Gwiazda, On unsteady flows of implicitly
constituted incompressible fluids, SIAM J. Math. Anal. 44 (2012) 2756–2801.

D. Breit, L. Diening, S. Schwarzacher, Solenoidal Lipschitz truncation for parabolic PDEs, Math.
Models Methods Appl. Sci. 23 (2013) 2671–2700.

M. Bulíček, J. Málek On unsteady internal fows of Bingham fuids subject to threshold slip on the
impermeable boundary, (Eds. H. Amann, Y. Giga, H. Okamoto, H. Kozono, M. Yamazaki), Recent
Developments of Mathematical Fluid Mechanics, Birkhäuser/Springer, Basel, 2016, 135-156.

M. Bulíček, J. Málek, Internal flows of incompressible fluids subject to stick-slip boundary
conditions, Vietnam Journal of Mathematics 45 (2017), 207–220.

E. Maringová, J. Žabenský: On a Navier-Stokes-Fourier-like system capturing transitions between
viscous and inviscid fluid regimes and between no-slip and perfect-slip boundary conditions,
Nonlinear Analysis: Real World Applications 41 (2018) 152-178.

J. Blechta, J. Málek, K.R. Rajagopal: On the classification of incompressible fluids and a
mathematical analysis of the equations that govern their motions, a revised version considerd for
publication in SIAM J. Math. Anal. (2019), arXiv: 1902.04853.

A. Abbatiello, E. Feireisl: On a class of generalized solutions to equations describing
incompressible viscous fluids, arXiv: 1905.12732 (2019).

Tools: symmetric role of S and D; Lipschitz truncation of Bochner-Sobolev
functions; maximal monotone responses; biting lemma



G(
∗
S,S,

∗
D,D) = O - rate-type viscoelastic fluids

I capability of describing stress relaxation and nonlinear creep

∗
A generalizes d

dtA = ∂A
∂t + (v · ∇)A that is not objective

O
A =

d

dt
A− LA− ALT L := ∇v

upper-convected Oldroyd
◦
A =

d

dt
A−WA− AWT W := (L− LT)/2

Jaumann-Zaremba (corotational)
�
A =

◦
A− a(DA− AD) a ∈ [−1, 1]

Gordon-Schowalter



Popular models within G(
∗
S,S,

∗
D,D) = O

• Maxwell (1867)

τ
O
S + S = 2ν1D ν = 0 τ =

ν1

E

• Oldroyd-B (1950)

τ
O
S + S = 2ντ

O
D + 2(ν1 + ν)D τ =

ν1

E

• Johnson-Segalman (1977)

τ
�
S + S = 2ντ

�
D + 2(a+ ν)D a ∈ [−1, 1]

P. L. Lions, N. Masmoudi: Global solutions for some Oldroyd models of non-Newtonian flows,
Chinese Annals of Mathematics. Series B, Vol. 21, pp. 131–146 (2000)

D. Hu, T. Lelièvre: New entropy estimates for Oldroyd-B and related models, Communications in
Mathematical Sciences, Vol. 5, pp. 909–916 (2007)

N. Masmoudi: Global existence of weak solutions to macroscopic models of polymeric flows,
Journal de Mathématiques Pures et Appliquées. Neuvième Série, Vol. 96, pp. 502–520 (2011)



G(
∗
S,S,

∗
D,D)−∆S = O

+ Both mathematical and physical
• regularization (stabilization of numerical methods)

• steady flows: El-Kareh, Leal (1989)
• 2d, Oldroyd: Barrett, Boyaval (2011)
• 2d: Constantin+Kliegl (2012), Chupin+Martin (2015)
Lukáčová, Mizerová, Nečasová (2015)
Elgindi, Rousset (2016), Barrett, Süli (2017)

• 3d, stronger regularization: Kreml, Pokorný,
Šalom (2015)

• instabilities: shear banding, vorticity banding - to determine
thickness of bands

Dhont, Briels (2008), Divoux et al (2016)

- No 3d long-time and large-data theory for popular models with
stress diffusion is available



A popular model within G(
∗∗
S,
∗
S,S,

∗∗
D,
∗
D,D) = O

I Burgers (1939)

divv = 0

∂v

∂t
+ div(v ⊗ v) = −∇p+ ν∆v + div S

OO
S + λ1

O
S + λ2S = η1D + η2

O
D

Unknowns v = (v1, v2, v3), p,S = (S11, S12, S13, S22, S23, S33)

Material coefficients ν > 0 λ1 > 0, λ2 > 0, η1 > 0, η2 > 0

O
S := ∂S

∂t + (v · ∇)S− (∇v)S− S(∇v)T

the upper convected Oldroyd derivative

I No mathematical theory is available



Asphalt concrete Bovine eye

• composite material
• consists of mineral aggregate bound
with asphalt binder and compacted

• 2% of air voids ⇒ almost
incompressible

• viscoelastic behavior (Monismith,
Secor 1962)

• transparent, colorless, gelatinous
• 98% of water, NaCl, hyaluronan
• maintains the shape of the eye,
keeps a clear path to the retina

• viscoelastic behavior
(Sharif-Kashani et al. 2011)



Questions concerning physics
• consistency with the laws of thermodynamics
• physical interpretation of the constants λ1, λ2, η1, η2

• specification of the initial conditions (second order time
derivative)

• correct choice of objective derivatives
• extension to compressible viscoelastic fluids
• extension to include thermal effects

Questions concerning PDE analysis
• weak solution - primar concept of solution in continuum physics
• weak solution - basic object for several powerful numerical
methods
• a priori estimates - basis for long-time and large data existence

theory
• a priori estimates - determine function spaces that are sufficient

for making the weak formulation of PDEs meaningful and where
solution should be look for

• a priori estimates - a tool to construct Lyapunov functional and
distance measures to study qualitative behavior

• viscoelasticity - bridge between viscous and elastic materials
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• consistency with the laws of thermodynamics
• physical interpretation of the constants λ1, λ2, η1, η2

• specification of the initial conditions (second order time
derivative)

• correct choice of objective derivatives
• extension to compressible viscoelastic fluids
• extension to include thermal effects

Questions concerning PDE analysis
• weak solution - primar concept of solution in continuum physics
• weak solution - basic object for several powerful numerical
methods
• a priori estimates - basis for long-time and large data existence
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Thermodynamic approach

Building blocks

• balance equations

• kinematics - concept of natural configuration

• constitutive theory - knowledge of the constitutive equations for two
scalar quantities:

• Helmholtz free energy (characterizing how the material stores
the energy)

• the rate of the entropy production (characterizing how the
material dissipates the energy)

suffices to determine the constitutive equations for the Cauchy stress
and other fluxes

K. R. Rajagopal, A. R. Srinivasa: A thermodynamic framework for rate type fluid models, Journal
of Non-Newtonian Fluid Mechanics, Vol. 88, pp. 207–227 (2000)

K. R. Rajagopal, A. R. Srinivasa: On thermomechanical restrictions to continua, Proc. R. Soc.
Lond. A Vol. 460, 631–651 (2004)



Summary

• Extension of Leray’s program developed for the Navier-Stokes
equations to models of non-Newtonian fluid mechanics

• A close interconnection between continuum thermodynamics
and PDE analysis can be fruitful
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Section 7

Methodology applied to compressible
materials



Governing equations

d%
dt = −% divv

%dvdt = divT, T = TT

%dedt = T : D− div je

%dηdt + div jη = %ζ with ζ ≥ 0

ψ := e− θη Helmholtz free energy

Restriction to isothermal processes

T : D− %dψdt − div(je − θjη) = ξ with ξ := θ%ζ ≥ 0

If jη = je
θ , then

ξ = T : D− %dψdt with ξ ≥ 0



General thermodynamic framework

Constitutive equation for the Helmholtz free energy ψ:

ψ = ψ̃(y1, . . . , yN ) (1)

By means of balance equations (mass, linear and angular momenta,
energy) and kinematics one arrives at

ξ = T : D− %dψdt
(1)
=
∑
α

JαAα with

Constitutive equation for the rate of dissipation ξ:

ξ =
∑
α

γα|Aα|2

leads to
Jα = γαAα γα > 0



Compressible Navier-Stokes fluids

ψ = ψ0(%) pth(%) := %2ψ′0(%)

ξ = T : D− %dψ
dt

=⇒ ξ = Tδ : Dδ + (m+ pth) divv

ξ = 2νDδ : Dδ + λ| divv|2

T = mI + Tδ = −pthI + 2νDδ + λ divv I Compressible NS

• Tδ = O m+ pth = 0

T = −pthI Compressible Euler

• Tδ = O m+ pth = λ divv

T = −pthI + λ divv I no dissipation due to shearing



Incompressible Euler and Navier-Stokes fluids

Incompressible fluids divv = 0

ξ = Tδ : Dδ with ξ ≥ 0

• Tδ = 2νDδ
T = mI + 2νD Incompressible Navier-Stokes

• Tδ = O
T = mI Incompressible Euler



Elastic and Kelvin-Voigt solids

ψ =
µ

2%
(trB− 3− ln detB) B := FFT

Since dF
dt = LF, we get

dB
dt

= LB + BLT ⇐⇒
O
B = O and

d

dt
trB = 2B : D

Hence ξ = T : D− %dψdt with ξ ≥ 0

ξ = (T− µB) : D = (Tδ − µBδ) : D with ξ ≥ 0

ξ = 0 =⇒ T = mI + µBδ = −pI + µB
Incompressible neo-Hokeean solid

ξ = 2νD : D =⇒ T = −pI + µB + 2νD
Incompressible Kelvin-Voigt solid



Second key idea - Natural configuration

Natural configuration

• splits the deformation F into the elastic and dissipative parts Fκp(t)

and G

current configuration

reference configuration

dissipative
response

elastic
response

natural configuration

κ0(B)

κt(B)

F

Fκp(t)

G

κp(t)(B)

• F = Fκp(t)
G



Kinematics

• F = Fκp(t)
G

current configuration

reference configuration

dissipative
response

elastic
response

natural configuration

κ0(B)

κt(B)

F

Fκp(t)

G

κp(t)(B)

• F, G, Fκp(t)
Bκp(t) := Fκp(t)

FT
κp(t)

Cκp(t) := FT
κp(t)

Fκp(t)

• dF
dt

= LF =⇒ L = dF
dt
F−1 D, W

• Lκp(t)
:= dG

dt
G−1 Dκp(t)

, Wκp(t)

dBκp(t)

dt
= LBκp(t) + Bκp(t)LT − 2Fκp(t)

Dκp(t)
FT
κp(t)

=⇒

O
Bκp(t)

= −2Fκp(t)
Dκp(t)

FT
κp(t)

d

dt
trBκp(t) = 2Bκp(t) : D− 2Cκpi(t)

: Dκp(t)



Compressible and Incompressible
responses/Maxwell & Oldroyd-B

Natural configuration provides more variants for imposing compressibility
current configuration

reference configuration

dissipative
response

elastic
response

time

natural configuration

κ0(B)

κt(B)

κp(t)(B)

0 t

ψ =
µ

2ρ

(
trBκp(t) − 3− ln detBκp(t)

)
ξ = 2νD : D + 2ν1Dκp(t)

Cκp(t) : Dκp(t)
= 2ν|D|2 + 2ν1 tr(

O
Bκp(t)

B−1
κp(t)

O
Bκp(t)

)

lead to Maxwell and Oldroyd-B fluid

J. Málek, K. R. Rajagopal, K. Tůma: On a variant of the Maxwell and Oldroyd-B models within
the context of a thermodynamic basis, International Journal of Nonlinear Mechanics, Vol. 76, pp.
42–47 (2015)

J. Málek, V. Průša: Derivation of equations of continuum mechanics and thermodynamics of
fluids, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, (eds.Y. Giga, A.
Novotný), Springer International Publishing, Cham, pp.3-72 (2018)



κR κt

κp1(t)

κp2(t)

G1

G2

FκR

Fκp1(t)

Fκp2(t)

F = Fκp1(t)
G1 = Fκp2(t)

G2

Bκp1(t)
= Fκp1(t)

FT
κp1(t)

, Dκp1(t)
=
(
Ġ1G−1

1

)
sym

Bκp2(t)
= Fκp2(t)

FT
κp2(t)

, Dκp2(t)
=
(
Ġ2G−1

2

)
sym



Towards Burgers models

Helmholtz free energy ψ – compressible neo-Hookean

ψ =
G1

2ρ

(
trBκp1(t)

− 3− ln detBκp1(t)

)
+
G2

2ρ

(
trBκp2(t)

− 3− ln detBκp2(t)

)

Rate of entropy production ξ

0 ≤ ξ̃ = 2µ|D|2 + 2G1τ1|Fκp1(t)
Dκp1(t)

|2 + 2G2τ2|Fκp2(t)
Dκp2(t)

|2



T = −pI + 2µD +G1(Bκp1(t)
− I) +G2(Bκp2(t)

− I)
O
Bκp1(t)

+
1

τ1
(Bκp1(t)

− I) = O

O
Bκp2(t)

+
1

τ2
(Bκp2(t)

− I) = O

Equivalent to a standard Burgers model

T = −pI + 2µD + S
OO
S +

(
1

τ1
+

1

τ2

)
O
S +

1

τ1τ2
S = 2

(
G1

τ2
+
G2

τ1

)
D + 2(G1 +G2)

O
D



Energy estimates and specification of ψ and ξ

• Energy equality valid for t ∈ (0, T ]

‖v(t)‖22 + 2

ˆ t

0

ˆ
Ω

S : D = ‖v0‖22

• Reduced thermodynamical identity

ξ = S : D− dψ
dt with ξ ≥ 0

• Specification of the constitutive equations of ψ and ξ

ψ = ψ̃(. . . ) ξ = ξ̃(. . . )

• Updated energy equality

‖v(t)‖22 + ‖ψ̃(. . . )(t)‖1 + 2

ˆ t

0

ˆ
Ω

ξ̃(. . . ) = ‖v0‖22 + ‖ψ̃0(. . . )‖1
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