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Introduction: Beginnings of moduli

0.1. Early history. The study of a moduli space of Riemann surfaces
of genus g was initiated (unsurprisingly) by Riemann, who was the
first to perform the heuristic calculation that the space of such surfaces
depends on 3g − 3 complex parameters, or “moduli.”

In the century following, the beautiful theory of the moduli space
Mg was uncovered by work of Klein, Poincaré, Teichmüller, and oth-
ers. The development of this theory played an integral role in many
fields of mathematics, for instance in introducing formal notions of
topological spaces, manifolds, and groups. Understanding Riemann
surfaces was a major motivation of Klein’s Erlangen program, which
sought to understand geometry in terms of the group of symmetries of
those geometries.

Study of K3 surfaces, while somewhat more recent than that of
curves, also spurred many important developments in mathematics,
such as Hodge theory and the mimimal model program. It was initiated
by the Italian school of algebraic geometry, in the early 20th century.
The Erlangen program had already found that algebraic curves split
into three broad categories: The positively curved case g = 0, the flat
case g = 1, and the negatively curved case g ≥ 2.

Enriques, Castelnuovo, and later Kodaira, extended these results to
surfaces, categorizing them by their Kodaira dimension

κ(X) := −1 + dim
⊕

m≥0H
0(X,mKX).

The κ = −∞ surfaces are ruled, the κ = 0 surfaces are Calabi-Yau,
the κ = 1 surfaces are elliptically fibered, and the remaining “general
type” surfaces have κ = 2. Within the κ = 0 surfaces are those covered
by an abelian surface (the abelian and bielliptic surfaces), and those
covered by a K3 surface (the Enriques and K3 surfaces).

Definition 0.1. A K3 surface X is a compact complex surface, which
is simply connected and has trivial canonical bundle KX = OX .
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Example 0.2. Let X ⊂ P3 be a smooth hypersurface of degree 4.
The adjunction formula implies that KX = (KP3 + 4H)

∣∣
X

= OX . By
Lefschetz hyperplane theorem, π1(X) = π1(P3) = 0 so X is a K3
surface. Other examples are the complete intersections X2,3 ⊂ P4,
X2,2,2 ⊂ P5, and double covers X → P2 branched over a sextic curve.

Some of the earliest K3 surfaces considered were the “Flächen vierten
Grades mit sechzehn singulären Punkten” of Kummer in 1884. These
are the quotients A/{±1} of abelian surfaces A by negation.

Theorem 0.3 (Enriques 1909). For all g ≥ 3, there are surfaces X ⊂
Pg of degree 2g − 2 embedded by a complete linear system, with trivial
canonical bundle KX = OX and h1(X,OX) = 0.

Theorem 0.4 (Severi 1909). For each 2d = 2g−2, there are 19 moduli
of such surfaces.

Example 0.5. Counting parameters for quartic hypersurfaces, we have
the space of quartic polynomials on P3, which has dimension

(
7
4

)
= 35,

minus the space of linear transformations GL4(C), which has dimension
16. Thus, the parameter count is 35− 16 = 19.

Definition 0.6. A polarized K3 surface (X,L) is a K3 surface together
with an ample line bundle L→ X.

The term K3 surface was coined by Weil in 1958, who named them
after the three mathematicians: Kähler, Kummer, Kodaira and after
the K2 mountain (Weil appreciated its beauty). One of the first major
results concerning the classification of K3 surfaces arose from the work
of Kodaira and Kuranishi, who developed the theory of deformations
of complex structure.

Theorem 0.7 (Kodaira 1964). All K3 surfaces are deformation equiv-
alent, and the space of complex deformations of a K3 surface is 20-
dimensional.

Thus the 19-dimensional families of polarized K3 surfaces are con-
tained in a single 20-dimensional family of analytic K3 surfaces.

We can also conclude that all K3 surfaces are diffeomorphic, and
more weakly, have the same cohomology ring. We have H i(X,Z) = 0
for i = 1, 3, H i(X,Z) = Z for i = 0, 4. Most important is H2(X,Z) '
Z22. There is a symmetric perfect pairing on H2(X,Z) making it iso-
metric to the even unimodular lattice II3,19 of signature (3, 19).

Importantly, the second cohomology H2(X,Z) admits a weight 2
Hodge structure: Upon tensoring with C, we get a decomposition

H2(X,C) = H2,0(X)⊕H1,1(X)⊕H0,2(X)
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for which Hp,q = Hq,p. The space Hp,q(X) is represented by the har-
monic (p, q)-forms. We additionally have (H2,0)⊥ = H2,0 ⊕ H1,1 and
x · x̄ > 0 for any nonzero x ∈ H2,0 = H0(X,Ω2) ' C.

Theorem 0.8 (Siu 1983). All K3 surfaces are Kähler.

0.2. Torelli theorems. An important development in the theory of
moduli of curves was the result of Torelli that a curve could be recon-
structed from essentially linear-algebraic data.

Theorem 0.9 (Torelli, 1913). Let {α1, β1, . . . , αg, βg} be a standard
system of curves on a Riemann surface C and let (ω1, . . . , ωg) be the
basis of the abelian differentials on C for which

∫
αi
ωj = δij. Then the

isomorphism type of C is uniquely recoverable from the symmetric g×g
period matrix (

∫
βi
ωj).

In modern terminology, we would say: C can be recovered from
the polarized Hodge structure on H1(C,Z). The central result to the
understanding of moduli of K3 surfaces is provided by an analogous
“Torelli theorem” of Piatetski-Shapiro and Shafarevich:

Theorem 0.10 (Piatetski-Shapiro, Shafarevich 1973). Two K3 sur-
faces X and X ′ are isomorphic if and only if there exists an isometry

φ : H2(X,Z)→ H2(X ′,Z)

for which φ(H2,0(X)) = H2,0(X ′).

We call such an isometry a Hodge isometry. In addition to this
statement concerning the isomorphism type of a single surface, we also
have a local Torelli theorem: The complex deformation space of X is
locally isomorphic to the period space:

Definition 0.11. The period domain of K3 surface is

D := P{x ∈ II3,19 ⊗ C
∣∣x · x = 0, x · x̄ > 0}.

A marking of a K3 surface is an isometry φ : H2(X,Z)→ II3,19 and the
period of a marked K3 surface (X,φ) is φ(H2,0(X)) ∈ D.

Theorem 0.12 (Local Torelli Theorem). Let (X,φ) be a marked K3
surface and let X→ U ⊂ H1(X,TX) ' C20 be the Kuranishi deforma-
tion. With a choice of marking of the fibers of X → U , the resulting
period map U → D is a local isomorphism.
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Let L→ X be a primitive ample line bundle. Then c1(L)·[Ω] = 0 and
furthermore, c1(L) ∈ H2(X,Z). We can refine the notion of a marking
for a pair (X,L) by choosing v ∈ II3,19 primitive with v · v = 2d and
require a marking of (X,L) to send φ : c1(L) 7→ v. Then the period
mapping lands rather in

D2d = P{x ∈ v⊥ ⊗ C
∣∣x · x = 0, x · x̄ > 0}.

Let Γ2d := {γ ∈ O(II3,19)
∣∣ γ(v) = v}. The great upshot of restricting

to polarized K3 surfaces is that now Γ2d acts properly discontinuously
on D2d. Hence, given any family (X,L)→ S over a base S, we have a
period map S → Γ2d\D2d.

Theorem 0.13. The period map identifies the moduli space of polarized
smooth K3 surfaces of degree 2d with a Zariski open subset of Γ2d\D2d.
If we allow the polarized K3 surface to have ADE singularities, then
the moduli space of degree 2d K3 surfaces is exactly F2d := Γ2d\D2d.

Additionally, we have the following well-known theorem:

Theorem 0.14 (Baily-Borel 1966). The quotient Γ2d\D2d is a quasipro-
jective variety.

0.3. Compactification of moduli. The compactification of moduli
spaces also has its origins inMg. A landmark achievement in algebraic
geometry was Deligne and Mumford’s the construction of a compacti-
fication

M ↪→Mg

at least for g ≥ 2. There are numerous reasons why a compactification
is useful. One is to compute intersection numbers, which in general
will not be well-defined unless one has a compact parameter space.

Example 0.15. Given a generic pencil of plane curves of degree d,
how many have an effective even theta characteristic? The answer is
an intersection number between a curve and a divisor in someMg.

For the best possibility of application, we would like a compactifica-
tion to enjoy the following two properties:

(1) The compactification should be modular: It should parameter-
ize a generalization of the geometric objects parameterized in
the original moduli space.

(2) The compactification should be smooth, or at least mildly sin-
gular, with understood boundary combinatorics.
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The second point is important for intersection theory. One needs, in
practice, an explicit understanding of the boundary strata to perform
computations in the compactification.

We have the best possible situation forMg: (1) this compactification
parameterizes stable curves generalizing smooth curves, and (2) Mg

has normal crossings boundary, and the boundary strata are completely
explicit, corresponding to stable graphs of genus g. Another result
analogous to this is for abelian varieties:

Theorem 0.16 (Mumford 1976, Namikawa 1980, Alexeev 1996). The
moduli space Ag of principally polarized abelian varieties (PPAVs) ad-
mits a toroidal compactification with a modular interpretation, called
the “second Voronoi compactification”.

It has toroidal singularities, its strata are in bijection with Voronoi
decompositions of lattices in Rh, h ≤ g, and the boundary points param-
eterize a generalization of a PPAV. In particular, the universal family
and the universal theta divisor extend over the boundary.

Thus, we pose the following question, which we will try to answer in
the following three lectures:

Question 0.17. Is there an analogous compactification of F2d? One
which is both modular and has toroidal singularities?
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1. Degenerations of K3 surfaces

1.1. Kulikov models. To understand what to put at the boundary
of moduli, we must begin by considering one parameter degenerations.
The valuative criterion of properness implies that any map C∗ → F2d

from a punctured curve C∗ = C\0 to the moduli space admits a unique
extension C → F 2d to the compactification. Thus, if F 2d is to parame-
terize some geometric objects, a central question, almost synonymous
with the compactification question, is: How do I extend the family of
polarized K3 surfaces (X∗, L∗)→ C∗ uniquely over the puncture?

As we well know from the example of Mg, the moduli space may
only end up as an orbifold/Deligne-Mumford stack. This means we
should allow finite base changes to the curve C∗. Thus, our starting
point is the semistable reduction theorem, due to Mumford:

Theorem 1.1. Let X∗ → C∗ be a family of smooth projective varieties
with smooth total space. After a finite base change, there is an extension
X → (C, 0) such that

(1) X is smooth, and
(2) X0 has simple normal crossings.

We call X → C a semistable model. Recall that X0 has simple
normal crossings (is SNC), if the scheme-theoretic fiber of 0 ∈ C is
analytically locally cut out by an equation of the form x1 · · ·xk = 0
in an analytic coordinate patch (x1, . . . , xn) on the smooth complex
manifold X. For the more algebraically minded reader, it suffices to
work in the étale topology.

One can wonder whether this is the possible. After all, semistable
models are highly non-unique. For instance, one can simply blow up a
smooth point of X0 in the total space X and produce a new semistable
model. The starting point for K3 compactification is a stronger form
of the semistable reduction theorem.

Theorem 1.2 (Kulikov 1977, Persson-Pinkham 1981). Let X∗ → C∗

be a degeneration of K3 surfaces. After a finite base change, there is a
semistable model X → (C, 0) which additionally satisfies:

(3) KX ∼C OX .
We call such a filling a Kulikov model. If Kulikov models were unique

for any given degeneration, we would essentially be done, but this is
not the case.

Example 1.3. Let λ(x4
0 + x4

1 + x4
2 + x4

3) + x0x1x2x3 = 0 be the Fermat
degeneration of quartic hypersurfaces in P3 over the curve with coordi-
nate λ. At λ = 0, we get a singular surface, the union of the coordinate
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hyperplanes in P3. Thus X0 is SNC. But, this is not a Kulikov model,
because the total space is singular. There are 24 singular points, at

V (xi, xj, x
4
0 + x4

1 + x4
2 + x4

3) for i < j

and a local analytic model of the singularity is V (ab− cd) ⊂ C4.
This singularity is called the conifold, the simplest and most impor-

tant singularity of a threefold. Blowing up (0, 0, 0, 0) ∈ V (ab−cd) gives
an exceptional divisor which is the projective quadric V (ab− cd) ⊂ P3,
isomorphic to P1 × P1. This exceptional surface may be contracted
along either ruling of P1 × P1 and still give a smooth threefold. These
then give the two small resolutions of the conifold—resolutions with no
divisorial exceptional locus.

For one conifold point p ∈ V (xi, xj, x
4
0 + x4

1 + x4
2 + x4

3), there are
thus two resolutions, either one replaces p with P1. But the two dif-
ferent conifold resolutions produce visibly different surfaces. In one
resolution, the exceptional curve lies on the component V (xi) while in
the other resolution, it lies on V (xj). Thus, the Fermat degeneration
admits 224 conifold resolutions, all of them Kulikov models.

Exercise 1.4. Model the conifold V (ab− cd) as a toric threefold, and
determine its fan explicitly. How can you describe the two resolutions
in term of toric geometry and the fan?

In fact, the conifold transition or Atiyah flop between the two reso-
lutions is the only ambiguity in Kulikov models:

Theorem 1.5 (Shepherd-Barron, 1983). Any two Kulikov models X →
(C, 0) and X ′ → (C, 0) extending a degeneration X∗ → C∗ can be
connected by a sequence of Atiyah flops along P1-curves in the central
fiber with normal bundle O(−1)⊕O(−1).

To illustrate the centrality of K3 surfaces to the development of
mathematics: The minimal model program originated with an attempt
to understand how to relate different Kulikov models.

1.2. Kulikov models, explicitly. What does a Kulikov model look
like? It is important for us to have a concrete understanding of the
central fiber X0. We have already seen that for the Fermat family, the
surface X0 results from gluing together various blow-ups of P2 along
triangles of curves. ThusX0 is, combinatorially, a tetrahedron. Kulikov
models naturally divide into three types:

Definition 1.6. We say that X → (C, 0) is Type I if X0 is smooth,
Type II if X0 a double locus but no triple points, and Type III if X0

has triple points.
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In other words X → (C, 0) is Type I if for X0 we only need the local
analytic model x = 0, Type II if we only need x = 0, xy = 0, and Type
III if we need x = 0, xy = 0, xyz = 0.

Theorem 1.7 (Description of Kulikov models). A Type I degeneration
X0 is a smooth K3 surface.

A Type II degeneration X0 =
⋃n
i=0 Vi is a chain of surfaces with V0

and Vn rational, and Vi for i ∈ {1, . . . , n−1} birational to E×P1 for E
a fixed elliptic curve. Each component Di,i+1 = Vi∩Vi+1 is a copy of the
elliptic curve E, and furthermore the double locus is an anticanonical
divisor on Vi. We have

Di,i+1

∣∣2
Vi

+Di,i+1

∣∣2
Vi+1

= 0.

A Type III degeneration X0 =
⋃
Vi is a union of rational surfaces.

Setting Dij = Vi ∩Vj, the double locus
∑

j Dij ⊂ Vi is an anticanonical
cycle of rational curves on Vi. The double curves satisfy

Dij

∣∣2
Vi

+Dij

∣∣2
Vj

= −2.

Finally, the combinatorial arrangement of the surfaces Vi is a two-
dimensional sphere S2.

Exercise 1.8. Prove the statements concerning D2
ij and the canonical

bundles of Vi using adjunction formula and that fact that KX = OX .

To be more precise about the “combinatorial arrangement”: Given
any SNC degeneration X → (C, 0), we can build a simplicial complex
Γ(X0) called the dual complex as follows:

(1) the 0-simplices vi correspond to components Vi ⊂ X0,
(2) the 1-simplices eij correspond to double loci Dij = Vi ∩ Vj,
(3) the 2-simplices tijk correspond to triple loci Tijk = Vi ∩ Vj ∩ Vk,

etc. Thus, the dual complex of a Type I degeneration is a point, the
dual complex of a Type II degeneration is a segment, broken up into
subsegments, and finally the dual complex of a Type III degeneration
is a triangulation of S2.

See Figure 6 for a heuristic diagram of a Type III degeneration: One
depicts the components Vi as 2-cells, the double curves Dij as edges,
and the triple points Tijk as trivalent vertices of the diagram. Figure 5
above depicts part of the dual complex, a triangulation of the sphere.

Remark 1.9. Conjecturally, something like this holds for all Calabi-
Yau degenerations: For “maximal” degenerations of:

(1) abelian varieties, Γ(X0) will be homeomorphic to (S1)n,
(2) hyperkähler varieties, Γ(X0) will be homeomorphic to CPn,
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(3) strict Calabi-Yau varieties, Γ(X0) will be homeomorphic to Sn.
All Calabi-Yau varieties are, up to an étale cover, a product of such,
and thus, simplicial decompositions of products of tori, CPn’s, and Sn’s
are expected to govern the combinatorics of these degenerations.

The only overlaps are S1 = S1, corresponding to elliptic curves, and
S2 = CP1, corresponding to K3s.

1.3. Anticanonical pairs. We would like to understand the compo-
nents of a Kulikov model explicitly. Our primary focus is the Type III
case, which is the most interesting and complicated, on both a moduli-
theoretic and combinatorial level.

Definition 1.10. An anticanonical pair (V,D) is a smooth rational
surface V together with an anticanonical divisor D ∈ | −KV | which is
a cycle/wheel D = D1 + · · ·+Dn of rational curves.

The most important example of an anticanonical pair is a smooth
toric surface V with its toric boundary as D.

Crash Course on Toric Surfaces 1.11. Smooth, complete, toric
surfaces are, up to the natural action of GL2(Z), in bijection with cy-
cles of vectors ~ei ∈ Z2 for which ~ei and ~ei+1 form an oriented lattice
basis of Z2 (and which wind only once around the origin). For ex-
ample, the cyclic sequence of vectors (1, 0), (0, 1), (−1,−1) successively
form lattice bases, and correspond to the toric surface P2. The most
important facts about toric surfaces for us are:

(1) The vectors ~ei are in bijection with the components Di of the
toric boundary, i.e. the 1-dimensional torus orbits.

(2) There is a combinatorial formula for the self-intersection num-
ber Di ·Di = D2

i given by

~ei−1 + ~ei+1 = (−D2
i )~ei.

For instance, in the above example, this determines that the three
components of the toric boundary of P2 each have self-intersection 1.

Exercise 1.12. Prove that 12+
∑

(−D2
i −3) = 0 for any toric surface.

Example 1.13.
(1) (P2, L1 + L2 + L3) with an anticanonical triangle of lines,
(2) (P2, L+ C) with a transversely intersecting line and conic,
(3) (P1 × P1, s1 + f1 + s2 + f2) with a anticanonical square formed

from two sections and two fibers,
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(4) the blowup Blp(V,D) of an anticanonical pair at a smooth point
p ∈ D, with anticanonical divisor the strict transform of D,

(5) the blowup Blp(V,D) of an anticanonical pair at a node p ∈ D,
with anticanonical divisor the reduced inverse image of D.

In fact, using Examples (4) and (5), called interior and corner blow-
ups, respectively, along with the reverse blow-down operations, one
can pass between any two anticanonical pairs. Examples (1) and (3)
are toric, and (5) maintains toricity, while (4) always destroys toricity.
Note that, even though P2 is a toric surface, Example (2) is not toric
because its anticanonical cycle is not the toric boundary.

Definition 1.14. The charge of an anticanonical pair is Q(V,D) :=
12+

∑
(−D2

i −3), if D has at least two components. If D is irreducible,
we instead define Q(V,D) := 11−D2.

The following theorem, while easy to prove, presaged the existence
of an important geometric structure on Γ(X0), discovered by mirror-
symmeters (cf. Hitchin, Kontsevich-Soibelman, Gross-Siebert, Gross-
Hacking-Keel).

Theorem 1.15 (Friedman-Miranda, 1983). Let X0 be a Type III Ku-
likov model. Then the sum of the charges is∑

iQ(Vi,
∑

j Dij) = 24.

Exercise 1.16. Prove this formula, using Gauss-Bonnet, the fact that
Γ(X0) is a triangulation, and the formula D2

ij +D2
ji = −2.

In particular, there are at most 24 non-toric components of a Type
III Kulikov model, since Q(V,D) ≥ 0 with equality iff (V,D) is toric.

1.4. The integral-affine structure on the dual complex. Let us
pay particular attention to the formula

~ei−1 + ~ei+1 = (−D2
i )~ei (1.4.1)

from the toric geometry of surfaces.

Question 1.17. If we try to lay the directed edges ~eij emanating from a
vertex vi ∈ Γ(X0) onto vectors in R2, then can we ensure that Equation
(1.4.1) always holds, around every vertex?

If vi corresponds to a toric component (Vi,
∑

j Dij) of X0, then near
vi this is possible by placing vi at a lattice point in Z2 and placing the
edges ~eij as the primitive integral vectors defining the fan of Vi.

As we expand out from a toric vertex vi continuing to impose that
Equation (1.4.1) holds, we find, intriguingly, that the fans patch to-
gether to form a triangular quilting of the plane, see Figure 1.
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Figure 1. Gluing fans together so Equation (1.4.1)
holds around multiple vertices of Γ(X0).

Figure 2. Monodromy around nontoric vertices.

But sometimes this fails. For example, suppose we have a component
V0 ⊂ X0 whose anticanonical cycle D0 ⊂ V0 consists of four curves, of
self-intersection numbers (−2,−1,−1,−1). This is easily constructed,
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for instance, by taking V0 as the result of 5 internal blowups on (3) in
Example 1.13.

One finds, that, as one tries to patch together the fans of the adjacent
surfaces, they fail to form a quilting of the plane. The issue is shown
in Figure 2. It is as though going around the vertex v0 in the dual
complex has a “monodromy”. This monodromy is exactly due to the
non-toricity of the component V0.

Answer 1.18. We can only endow Γ(X0) with a local embedding into
R2 satisfying Equation (1.4.1). Thus, we can think of Γ(X0) as only
having a locally flat structure, which undergoes a monodromy trans-
formation as one goes around non-toric vertices of the dual complex.

More precisely:

Theorem 1.19 (Gross-Hacking-Keel 2011, Engel 2014). The dual com-
plex Γ(X0) of a Type III Kulikov model admits canonically the structure
of an integral-affine sphere, or IAS2, with up to 24 singularities: the
open subset

Γ(X0) \ {vi
∣∣ (Vi,∑j Dij) is non-toric}

admits a collection of charts to R2 whose transition functions lie in the
integral-affine transformation group SL2(Z) n Z2.

The local embedding into R2 sends any triangle in Γ(X0) to a lattice
triangle of area 1

2
. Around any toric vertex vi the local embedding gives

the fan of the component Vi with the edges ~eij emanating from vi giving
the primitive integral vectors of the fan.

1.5. Polarized IAS2. The above discussion of Kulikov models, and the
combinatorics of the dual complexes has, so far, ignored the presence
of a polarization L∗ on the punctured family X∗ → C∗.

Theorem 1.20 (Shepherd-Barron, 1983). A Kulikov model can be cho-
sen X → (C, 0) for which the line bundle L∗ → X∗ extends to a line
bundle L→ X which is relatively big and nef over C. Then |4L| defines
a contraction of the curves in fibers intersecting L to be zero.

Definition 1.21. We call (X,L)→ (C, 0) a nef model.

One might hope that the nef model of a degeneration is unique, but
again, this is false. More importantly, the image of |4L| is also not
unique, so that need not be the limiting object in moduli either. This
is due to the fact that there are many different extensions of L∗ → X∗

to a line bundle on L → X. The space of such extensions is a torsor
over the subgroup of Pic(X) generated by OX(Vi).
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Suppose we are given a nef model. From it, we can produce a collec-
tion of non-negative integers, one for each edge of the dual complex:

nij := deg(L
∣∣
Dij

).

Crash Course on Toric Surfaces 1.22. Let (V,D) be a smooth,
complete toric surface associated to the sequence of vectors ~ei ∈ Z2.
Under what conditions does there exist a line bundle L→ V for which
L ·Di = ni? And under what circumstances is this line bundle nef?

The answer both questions is quite simple. For the first question, we
need that

∑
ni~ei = 0 is the zero-vector. For the second question, we

need ni ≥ 0. Thus, we can think of a nef line bundle on V as a weighted
balanced graph on its fan. The graph is supported on the vectors ~ei,
the weight is ni and the balancing condition is given by

∑
ni~ei = 0.

For example, a graph with positive weights n1, n2, n3 on the rays
(1, 0), (0, 1), (−1,−1) will be balanced if and only if n1 = n2 = n3 in
which case the line bundleOP2(n1) has the desired intersection numbers
with the three toric boundary components.

We now state an extension of Theorem 1.19:

Theorem 1.23 (Alexeev-Engel-Thompson, 2019, Alexeev-Brunyate-
Engel 2022). Let (X,L) → (C, 0) be a nef model. Then Γ(X0) admits
the structure of a polarized IAS2: A triangulated integral-affine sphere,
together with an effective, weighted, balanced graph LIA ⊂ Γ(X0). With
appropriate definitions, the converse holds too.

We only analyzed the “balancing condition” in 1.22 for a toric vertex
vi ∈ Γ(X0) and a modified definition of balancing is required for the
non-toric vertices.
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2. Compactification of the moduli space

2.1. KSBA compactifications. We will begin by understanding the
question of modular compactifications, i.e. compactifications which pa-
rameterize some generalization of a K3 surface.

It is instructive to look at curves first. Recall that we have a moduli
space Mg,n of genus g curves with n marked points, and a compacti-
ficationMg,n of it, but only when the inequality 3g − 3 + n > 0 holds.
There are two ways to view this inequality:

(1) It imposes the condition that Aut(C, x1, . . . , xn) is finite.
(2) It imposes the condition that KC + (x1 + · · ·+ xn) is ample.
It is clear why we would want to impose (1) as it is necessary condi-

tion to ensure that our moduli forms a Deligne-Mumford stack/orbifold,
but it is condition (2) which generalizes best to higher dimensions.

Let us also observe the following property of marked stable curves
(C, x1, . . . , xn) ∈Mg,n: The singularities of C are the simplest possible
curve singularities (simple nodes) and the marked points xi are never
nodes of C.

Of course, there are degenerations of curves which do not satisfy
these properties. For instance, one can degenerate a family of elliptic
curves inM1,1 to a cuspidal curve. But it is always possible to replace
such a degeneration with one satisfying the above conditions, because
Mg,n is proper.

A landmark achievement of MMP was to generalize this result to
higher dimensions. We require the following definition:

Definition 2.1. Let (X,∆) be a projective variety X together with
an effective Q-Weil divisor ∆. We say that the pair is slc stable if:

(1) KX + ∆ is Q-Cartier and ample.
(2) (X,∆) has semi-log canonical (slc) singularities.

The definition of slc singularities is somewhat technical. An approx-
imate definition is that if one takes an SNC resolution π : (X̃, ∆̃) →
(X,∆), then the “log discrepancy divisor”

(KX̃ + ∆̃)− π∗(KX + ∆),

necessarily a linear combination of the exceptional divisors of π, has
all coefficients ≥ −1. This definition has to be modified if (X,∆) is
non-normal to include the double locus as part of ∆ on each component
of the normalization.

Exercise 2.2. Let X be a curve and suppose that ∆ is a finite sum
of points with all coefficients 1. Check that (X,∆) is slc stable if and
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only if X is nodal and the points in ∆ are not nodes of X or equal to
each other.

Theorem 2.3 (Kollar-Shepherd-Barron 1988, Alexeev 1996, Kovacs–
Patakfalvi 2017). The components of moduli of slc stable varieties are
projective.

In particular, any degenerating family of slc stable varieties has a
unique slc stable limit. This is a stunning generalization of Mg,n to
moduli of varieties in all dimensions. Unfortunately, very little is known
about the actual projective moduli spaces which arise, and “Murphy’s
Law” is expected to hold—they are likely to have singularities as bad
as you can imagine.

2.2. Choices of polarizing divisor. An issue arises for K3 surfaces:
If we take the divisor ∆ to be empty, then KX + ∆ = OX is not ample!

The same issue arises for genus 1 curves (and abelian varieties) and
we do not have a nice moduli space M1. Rather, we must choose an
origin x ∈ C and then we get the space M1,1 which admits a nice
compactification. But a choice of origin on a genus 1 is, in a sense, no
choice at all, because there is an isomorphism between the two curves
(C, x) and (C, x′) with marked point, for any two choices of origin x, x′.

We will employ the same principle for polarized K3 surfaces, by
choosing an ample divisor on (X,L) which is canonically determined
by (X,L) itself, so that any isomorphism between two polarized K3
surfaces identifies the corresponding divisors.

Definition 2.4. Let (X,L) → F2d be the universal polarized K3 sur-
face and let XC(F2d) be the generic polarized K3 surface, i.e. the K3
surface over the generic point of the moduli space. A canonical choice
of polarizing divisor is a section R ∈ |nL|.

Alternatively, a canonical choice of polarizing divisor is an alge-
braically varying divisor in |nL|, over a Zariski-open subset U ⊂ F2d.

Example 2.5. Consider the moduli space F2 of degree 2 K3 surfaces
(X,L). Over a Zariski-open subset of F2, we have that

φ|L| : X → P2

is a double cover, branched over a smooth sextic curve. The ramifica-
tion divisor R ∈ |3L| is a canonical choice of polarizing divisor.

Example 2.6. Consider the moduli space F4 of degree 4 K3 surfaces
(X,L). Over a Zariski-open subset of F4 we have that X = V (f4) ⊂ P3

is the vanishing of a smooth quartic. Let

Hess(f) := det( ∂2f
∂xi∂xj

)
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be the determinant of the Hessian matrix of second partial derivatives.
Then R = V (Hess(f)) ∩ X ∈ |8L| is a canonical choice of polarizing
divisor for F4.

Example 2.7. Consider the moduli space F2d of degree 2d K3 surfaces
(X,L). Xi Chen proved that, there are exactly nd curves {Ri}nd

i=1 of
geometric genus zero in |L| over a Zariski-open subset of F2d. A famous
formula due to Yau-Zaslow states that nd = [qd] ∆(q)−1 where ∆(q) is
the modular discriminant. Then R :=

∑
Ri ∈ |ndL| is a canonical

choice of polarizing divisor, which we call the rational curve divisor.

Given a canonical choice of polarizing divisor, the pairs (X, εR) now
are slc stable, for all sufficiently small epsilon! this gives us a method
of compactifying the moduli space F2d.

Definition 2.8. Let FR

2d be the closure of the space of pairs (X, εR)
in the projective moduli space of all slc stable pairs.

This gives a modular compactification of the open subset U ⊂ F2d

since by construction, the moduli of pairs (X, εR) extends to the bound-
ary. But can we control the geometry of this compactification?

2.3. Divisor models. How, in practice, does one compute an slc sta-
ble limit of pairs (X, εR)? One answer is due to Laza:

Theorem 2.9 (Laza 2016, Alexeev-Engel-Thompson 2019). Consider
a degenerating family (X∗, εR∗) → C∗ of slc stable K3 pairs. Then,
up to a finite base change, there is a Kulikov model (X, εR) → (C, 0)
for which R ⊃ R∗ is a flat extension of the divisor R∗ enjoying the
following properties:

(1) R0 is nef,
(2) R0 contains no strata of X0.

Thus, we can view this as a refinement of Shepherd-Barron’s The-
orem 1.20 on the existence of an extension of (X∗, L∗) so that L is
relatively nef. For instance, OX(R) will be such an extension.

Definition 2.10. We call (X, εR) a divisor model. Let

X = ProjC
⊕

n≥0 π∗(OX(nR))

and let R be the image of R under the contraction X → X. We call
(X, εR) be the stable model.

This is the unique stable limit of the pairs (X∗, εR∗) in slc stable
moduli. To summarize: The method of computing a stable limit is to
first find a Kulikov model X0, perform sequences of Atiyah flops until
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the flat limit R0 of the divisors Rt satisfy properties (1) and (2), and
finally contract all curves intersecting R0 to be zero.

2.4. Toroidal compactifications. We now discuss compactifications
of F2d of an a priori entirely different nature. These compactifications
exist solely in the capacity of the isomorphism F2d ' Γ2d\D2d with a
locally symmetric space. We will drop the index 2d, writing simply
D = D2d and Γ = Γ2d.

The Baily-Borel Theorem 0.14 includes, as part of its package, an
explicit projective compactification

Γ\D ↪→ Γ\D
BB

whose boundary can be roughly described as follows: the boundary
is a finite union of modular curves and points. The modular curves
and points are in bijection with the Q-parabolic subgroups of ΓQ up to
Γ-conjugacy, which are in turn in bijection with the rational isotropic
subspaces in v⊥ ⊗Q, up to Γ-action.

Note that since v⊥ has signature (2, 19), any isotropic subspace must
have dimension 1 or 2. Let us denote a rank 1 isotropic subspace by
I ⊂ v⊥ and a rank 2 isotropic subspace by J ⊂ v⊥.

Associated to an isotropic subspace I is a filtration I ⊂ I⊥ ⊂ v⊥

(and similarly for J) which we will call the weight filtration. The cor-
responding parabolic subgroups of Γ are simply StabΓ(I), StabΓ(J). If
one wishes to think in terms of matrices, these are exactly the matrices
which can be written in block form∗ ∗ ∗0 ∗ ∗

0 0 ∗


where the three blocks are, respectively, lifts of I, I⊥/I, v⊥/I⊥ i.e. of
the associated graded of the weight filtration (and same for J).

In the rank 2 case, we have a homomorphism StabΓ(J)→ SL(J) '
SL2(Z) and the corresponding boundary stratum

BJ ⊂ Γ\D
BB

is exactly the upper half-plane modulo the image of this homomor-
phism. The boundary strata BI in the rank 1 case are points, and
form cusps of the modular curves BJ whenever I ⊂ J .

We have the following fact, proven using Hodge theory and Schmid’s
1973 nilpotent orbit theorem:
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Theorem 2.11. Let (X∗, L∗)→ C∗ be a degeneration of polarized K3
surfaces. The corresponding period map C∗ → Γ\D, limits, in the
Baily-Borel compactification, to:

(Type I) a point in the interior Γ\D,
(Type II) a point in a modular curve BJ with rk J = 2,
(Type III) a point BI with rk I = 1.

Furthermore, in Type II, the j-invariant of the point of the modular
curve agrees with the j-invariant of the double curve E of the Type II
Kulikov surface X0.

This theorem is the first bridge between the geometry of the central
fiber X0 and the limit point in a Hodge-theoretic compactification. But
the Baily-Borel compactification is highly singular, and its boundary
has a gigantic codimension of 18! While it remembers some small
amount of geometric data, it is a very “lossy” compactification.

Theorem 2.12 (Ash-Mumford-Rapaport-Tai 1975). There are com-
pactifications

Γ\D ↪→ Γ\D
F

fibering over the Baily-Borel compactification, depending on certain
combinatorial data F, called a fan. These can be chosen smooth with
simple normal crossing boundary (in the orbifold sense, because of is-
sues concerning finite stabilizers). More generally, they have toroidal
singularities and completely explicit boundary stratification.

These are exactly the type of compactifications we want for F2d as
we will be able to understand the geometry at the boundary.

Definition 2.13. A fan F (for Γ\D) consists of the following data: For
each Γ-orbit of isotropic line I ⊂ v⊥, we require a rational polyhedral
decomposition FI of the positive cone of I⊥/I ⊗ R which has finitely
many orbits of cones under ΓI := StabΓ(I).

Recall that in a quadratic space R1,n of hyperbolic signature (1, n),
the positive cone is one of the two connected components of the positive
norm vectors. Note that the signature of I⊥/I is (1, 18) because v⊥ had
signature (2, 19).

The toroidal compactification has the following boundary strata:
They are in bijection with the orbits of polyhedral cones in FI un-
der ΓI . Furthermore, if a cone σ ∈ FI has codimension k, then the
corresponding boundary stratum is a finite quotient of (C∗)k and one
stratum is incident upon another (contains it in its Zariski closure) if
and only if the corresponding cones are.
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Remark 2.14. There is one exception to the above prescription: When
the cone σ is a rational ray on the light cone (i.e. boundary of the
positive cone) of I⊥/I ⊗ R.

Such cones lie in an isotropic ray J ⊂ I⊥/I whose inverse image in I⊥
is an isotropic plane J ⊃ I. Then the corresponding boundary divisor
of the toroidal compactification is a finite, fiber-preserving quotient of
J⊥/J⊗E where E is the universal elliptic curve over the corresponding
modular curve BJ .

Finally, there are the semitoroidal compactifications due to Looi-
jenga. These are somewhat technical to define, so we will not get into
the exact details. We record their main properties:

(1) They are a common generalization of the Baily-Borel and toroidal
compactifications, but include more.

(2) They also depend only combinatorial information, similar to a
fan F, but one allows cones to be infinitely generated.

(3) Their strata are also finite quotients of tori, except in Type II
where they are finite quotients of L⊗ E for some lattice L.

(4) (Alexeev-Engel 2023) They are exactly the normal compactifi-
cations of Γ\D which are dominated by some toroidal compact-
ification, and dominate the Baily-Borel compactification.
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3. Recognizable divisors

3.1. Main theorem. We have compactifications of F2d constructed
by completely different methods, and which have the complementary
qualities we want:

The toroidal compactifications F F

2d are mildly singular, with easily
understood boundary and stratification. But there are infinitely many,
with no one distinguished.

The slc stable pair compactifications FR

2d associated to a canonical
choice of polarizing divisor R naturally have a universal family over
them and parameterize some generalization of K3 surfaces. But it is
unclear how to describe their boundary. In theory, could have badly
behaved singularities. It is not even clear if they contain F2d.

Question 3.1. Are there any slc compactifications associated to a
divisor R which are toroidal for some fan FR? If so, can we explicitly
determine the resulting fan FR from R?

To avoid dragging out the punchline, the answer is “yes" so long as
R satisfies the following key condition:

Definition 3.2. Let R be a choice of polarizing divisor for F2d. Then
we say thatR is recognizable if any Kulikov surfaceX0 contains a divisor
R0 which is the flat limit of R along any smoothing X → (C, 0).

The critical words here are those in bold. Given a single smoothing
of X0 to a Kulikov model X → (C, 0), we can always simply take the
Zariski closure of Rt ⊂ Xt for t 6= 0, and intersect with the central fiber
to get the flat limit R0. But recognizability additionally asserts that
the resulting curve R0 ⊂ X0 is independent of how we smooth X0.

Theorem 3.3 (Alexeev-Engel 2023). If R is a recognizable divisor for
F2d then the normalization

(F
R

2d)
ν = F

FR

2d

is a semitoroidal compactification for some unique semifan FR.
Furthermore, the “rational curve divisor” R =

∑nd

i=1 Ri is recogniz-
able for all degrees 2d.

3.2. Example of degree 2 K3s. For degree 2 K3 surfaces X → P2,
the ramification divisor R ⊂ X is recognizable. Let us now describe the
corresponding fan FR. There is, up to the Γ-action a unique isotropic
line I ⊂ v⊥ and the relevant signature (1, 18) lattice is

I⊥/I = 〈−2〉 ⊕H ⊕ E⊕2
8 .
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There is a famous list due to Vinberg of hyperbolic lattices whose
reflection subgroup is finite index in their isometry group (such a lattice
is reflective). It turns out that I⊥/I is in this list and the corresponding
Coxeter/Vinberg/Dynkin root diagram is shown in Figure 3.
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18 19

20

2122

23

Figure 3. The root diagram for I⊥/I.

This says is that I⊥/I is generated by 24 vectors βi of norm −2,
intersecting according to the graph depicted, and

K := {x ∈ I⊥/I ⊗ R
∣∣x · βi ≥ 0}

is a fundamental domain in the positive cone for the finite index sub-
group of O(I⊥/I) generated by reflections in the roots βi acting by

rβi(x) = x+ (x · βi)βi.

We can construct a fan Fcox by taking the maximal cones to be ΓI ·K.
This “Coxeter fan” is actually not the fan we want to take. Rather, we
define a new chamber

L = Γirr · K
where Γirr is the subgroup generated by reflections in the roots β18,
β19, β20, β21, β22, β23. As Γirr is infinite, L is infinitely walled. Then we
define the maximal cones of FR to be ΓI/Γirr · L, that is the maximal



22 PHILIP ENGEL

cones are the orbits of L. Thus FR is strictly a semifan, as it has cones
with infinite numbers of walls. We have:

Theorem 3.4 (Alexeev-Engel-Thompson, 2023). (F
R

2 )ν = F
FR

2 .

Furthermore, the normalization ν is necessary, since in FR

2 there are
different toroidal strata which actually get glued together.

Proof. The lattice points λ ∈ I⊥/I lying in the positive cone are in
bijection with the possible “Picard-Lefschetz transformations” of a de-
generation X∗ → C∗ in the following sense. Denote the monodromy-
transformation as

T : H2(Xt)→ H2(Xt).

Then it is unipotent, and has a nilpotent logarithm N := log T . If the
limit of the period map is the Baily-Borel boundary point BI , then N
can be written

N(x) = (x · λ)δ − (x · δ)λ
where I = Zδ and λ ∈ I⊥/I is some vector in the positive cone.

The proof proceeds by “recipe”: The input to the recipe is some
degeneration X∗ → C∗ and the output is the stable model (X0, εR0).

(1st step) Extract the vector λ encoding the Picard-Lefschetz transform
of the degeneration X∗ → C∗.

(2nd step) Use the vector λ build a polarized integral-affine sphere B, with
a weighted balanced graph RIA ⊂ B inside it. We give more
details below.

(3rd step) Triangulate B and interpret it as the dual complex Γ(X0) of
a Type III Kulikov surface via Theorem 1.19. Build a divisor
R0 ⊂ X0 where OX0(R0) corresponds to RIA via Theorem 1.23.

(4th step) Prove, using deformation theory (particularly work of Fried-
man), that (X0, R0) can be smoothed into (X∗, R∗).

(5th step) Pass to the stable model (X0, εR0) by contracting curves per-
pendicular to R0.

The upshot of all this hard work is that we have very explicit control
of the stable model, as a function of the Hodge-theoretic data λ. In
particular it follows from the construction that:

Proposition 3.5. The combinatorial type of the stable limit (X0, εR0)
is entirely governed by the combinatorial type of the polarized integral-
affine sphere (B,RIA), and in turn by λ ∈ I⊥/I.

Furthermore, the following defines a semifan:

FR :=

{
loci of λ ∈ I⊥/I on which (B,RIA)

is combinatorially constant

}
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It is this semifan which verifies the theorem. �

The critical step of the proof is really the 2nd: How does one input
a vector λ ∈ I⊥/I and output a combinatorial object such as a polar-
ized integral-affine sphere encoding a divisor model? The answer is as
follows: First, after an application of an element of ΓI we may assume
λ ∈ K lies in the Coxeter chamber for the reflection group. Thus, we
are able to extract 24 non-negative integers

ai := λ · βi for i = 1, . . . , 24.

These integers actually satisfy five linear relations, since λ ∈ I⊥/I is a
vector in a 19-dimensional lattice.
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111213
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17

Figure 4. Half of a polarized integral-affine sphere as-
sociated to the compactificaton of F2.

From the vector ~a ∈ Z24
≥0 we will build a polygon as in Figure 4.

First, we successively put vectors ai~vi for i = 0, . . . , 17 end-to-end. Here
~vi ∈ Z2 are some fixed primitive integral vectors. Using the values ai
for i = 18, 19, 20, we modify this figure by cutting out triangles of affine
side lengths ai from the appropriate sides of the polygon. Finally, we
glue two copies of the resulting shape together, sewing up various edges
to form an integral-affine sphere B. The “equator” of the sphere, shown
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Figure 5. Half of an integral-affine sphere, for different
parameters ~a.

-1

-2

-2

-1

-3
1

-2

-2

-1

-3
1

0

0

0

0

0
-2

-1

-1

-1
-1

-1

-1-1
-1

-1

-1
-1

-1

-1

-1-1

-1
-1

-1-1

-1

-1

-1
-1

-1

0
-2
0-2

2-4
5-7 5 -7 6 -8 8 -10

-1

-1
-1

-1
-1

-2

-2

-1

-31

-2

-2

-1

-31

0

0

0

0

0-2

-1

-1
-1 -1

-1

-1
-1
-1

-1

-1
-1

-1

-1

-1-1

-1
-1

-1-1
-1

-1

-1
-1 -1

0
-2 0-2

2
-4

5
-7

5
-7

6
-8

8
-10

Figure 6. The resulting Kulikov surface of Type III.
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in blue, becomes RIA ⊂ B. Another example of the same construction,
but for differing value of λ (equivalently ~a) is shown in Figures 5, 6.

This procedure may appear unmotivated, but the construction is
best understood in the context of mirror symmetry for K3 surfaces.

Due to Dolgachev’s 1996 work on lattice-polarized mirror symmetry,
the diagram in Figure 3 can be thought of either as:

(A-side) the roots in the lattice I⊥/I where we should put a fan for a
toroidal compactification of F2 or

(B-side) the (−2)-curves on the mirror K3 surface whose perpendiculars
bound the ample cone.

Then the construction of the integral affine sphere B in terms of λ
can be understood much more easily as a construction in symplectic
geometry. One instead constructs a Lagrangian torus fibration of the
mirror whose symplectic form has Kähler class corresponding to λ. The
key tools in symplectic topology for these constructions come from 2001
work of Symington.

This story generalizes to all moduli of K3 surfaces with involution:

Theorem 3.6 (Alexeev-Engel 2022). For all moduli spaces of K3 sur-
faces with involution, there are modular semitoroidal compactifications,
associated to the ramification divisor, and one can understand the cor-
responding semifan explicitly.

3.3. Example of elliptic K3 surfaces. It is also possible to compact-
ify the moduli space of elliptic K3 surfaces using recognizable divisors.

Definition 3.7. An elliptic K3 surface is a K3 surface together with
a fibration X → P1 by genus 1 curves and a section s.

Counted with multiplicity, there are always 24 singular fibers of such
a fibration. The subgroup of Pic(X) generated by s and the fiber f is
isometric to the unimodular lattice H. Thus, the elliptic surfaces are
“H-polarized K3 surfaces” since they all contain a copy of H in their
Picard group. Then are natural choices of polarizing divisor, given by

R = s+m
∑24

i=1 fi

where the sum runs over the singular fibers. Here m > 0 is some
number. In fact, up to a scaling factor, this divisor agrees with the
rational curve divisor for an appropriate choice of m.

In this case, we have a similar result to the degree 2 K3 surfaces:

Theorem 3.8 (Alexeev-Brunyate-Engel 2022). There is a toroidal com-
pactification of Fell normalizing the stable slc compactification for the
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divisor R. The divisor and stable models admit an explicit description
in terms of polarized integral-affine spheres.

This ends up being nicer than the degree 2 in fact, because we have
a fan rather than a semifan. An example of a polarized integral-affine
sphere for this case is shown in Figure 7. As usual, it is only possible to
draw a fundamental domain for the sphere, together with its integral-
affine embedding into R2.

2

23

Figure 7. Integral-affine sphere for elliptic K3 surfaces.

3.4. Proof in the general case. We finally outline the proof Theo-
rem 3.3. The key idea is that the condition of recognizability, Defini-
tion 3.2, ensures that the universal pair (X,R) extends over the entire
“moduli space of Kulikov surfaces” FKul

2d .



COMPACT K3 MODULI 27

This space is in some ways poorly behaved, but can be intuitively
thought of as (some non-separated version of) the “toroidal compacti-
fication” associated to a fan F consisting of every positive ray in I⊥/I.
This space is not finite type, as it contains boundary divisors isomor-
phic to (C∗)18 for every vector λ ∈ I⊥/I in the positive cone. But, it
does satisfy the valuative criterion for completeness, as any punctured
arc in F2d admits a completion in FKul

2d due to the Kulikov-Persson-
Pinkham Theorem 1.2.

Laza’s Theorem 2.9 proving the existence of a divisor model implies
that the open subset FKul,R

2d ⊂ FKul
2d on which the universal pair (X,R)

defines a divisor model surjects onto the stable slc compactification:

FKul,R
2d � F

R

2d.

Finally, since FKul,R
2d is in some sense toroidal (it is contained in the

aforementioned infinite type toroidal compactification), the theorem
that the normalization of FR

2d is semitoroidal follows from property
(4) of semitoroidal compactifications. This proves that recognizable
divisors lead to semitoroidal compactifications.

It remains to prove that the rational curve divisor is recognizable. In
a degeneration (X,L) → (C, 0), we may as well base change until the
rational curves on the general fiber are not permuted. Then a family
of rational curves in |L∗| limits to a so-called genus 0 admissible stable
map—a map from a nodal, arithmetic genus 0 curve, which satisfies a
certain matching-tangency condition along all double loci Dij.

One must argue using adjunction that the image of a genus 0 admissi-
ble stable map is rigid, perhaps a surprising fact given thatX0 is a union
of rational surfaces! This implies the limits of rational curves on Xt to
curves on X0 are actually independent of the smoothing X → (C, 0).
They can be “recognized” from the geometry of X0 alone, as images of
admissible stable genus 0 maps.
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