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Topics

Despite their phenomenal success at a technological level, liquid crystals
remain a mysterious material, difficult to model and understand conceptually.
The challenge of describing even the simplest and most ubiquitous of liquid
crystaline systems – the nematic liquid crystals – using a model that is both
comprehensive and simple enough to manipulate efficiently has led to the
existence of several major competing theories.

A benchmark test of any liquid crystal model is its predictive capacity
with regard to certain patterns, called defects. Predicting the appearance
and behaviour of these defects is obviously of utter importance in the man-
ufacturing of liquid crystal displays.

So far, there has been yet no clear understanding as to what the defects
are from mathematical point of view. In the Oseen-Frank theory defects
are interpreted as discontinuities of the vector fields describing the optical
director and they are classified in terms of topological invariants of vector
fields. In Ericksen’s theory defects are points of isotropic melting, i.e. points
where the order parameter vanishes [4]. The defects, in the work of De
Gennes [6] are regarded as discontinuities of eigenvectors. However, at the
moment, there exists only a very limited understanding of how to characterize
these discontinuities analytically [11], [13].

These challenging issues brought us together in order to investigate several
key open problems in one of the most comprehensive theories, but least un-
derstood mathematically, the Landau-De Gennes Q-tensor theory. From the
mathematical point of view the structure of Q-tensor equations has similar-
ities with the Ginzburg-Landau system [2], particularly its 3D version, and
can be regarded as an approximate harmonic map system [13]. Therefore
one can try to study the singularities and defects using methods developed
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in Ginzburg-Landau theory. However, some of the most challenging aspects
of the Q-tensor equations are related to the additional degrees of freedom
present in Q-tensor theory and therefore the problem is more complicated
and requires new analytical tools to tackle it.

Goals

We focused on understanding the so-called melting hedgehog –the expected
universal structure around melting points – and we studied its basic qualita-
tive features, related to its profile and energetic stability. The main challenge
has been to develop suitable tools for handling the high dimensionality of the
problem. More precisely we studied and obtained various results on:

• fine qualitative properties of the scalar profile of the melting hedgehog;

• existence and uniqueness for singular ODEs that generalise the ones
used for describing the melting hedgehog;

• local stability of the melting hedgehog depending on the parameters of
the nonlinear potential;

We also studied and made some progress on related problems1 :

• understanding the universality of melting hedgehog as a prototype for
melting points, at least in the case of local minimizers;

• understanding the profile of general isotropic melting points;

• criteria for determining symmetry-breaking solutions, in particular ax-
ially symmetric solutions, corresponding to hedgehog boundary condi-
tions;

• existence of large perturbations, that reduce the energy of the melting
hedgehog solution.

1These will constitute subject of future research by the same group during 2014, in
particular, in April at The Mathematisches Forschungsinstitut Oberwolfach.
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Organization

The first month of our work, in 2011, focused on studying the stability of the
melting hedgehog defect. Our initial starting point was the work [14] that
considers what can be regarded as a toy-problem for our higher dimensional
case. We understood that there are two main aspects to study separately:

• the ODE governing the underlying scalar profile;

• the techniques necessary for dealing with the high-dimensionality of
the possible perturbations that could lower the energy.

We realized that substantially different higher dimensional analogues of the
available techniques are necessary. We developed most of these techniques,
reducing the study of the stability problem to understanding the interactions
between three scalar functions.

In the last two months of the programme, in 2012, after a one-week
meeting in Bristol, we focused first on the problem of understanding the
above mentioned interactions between three scalar functions, which proved to
be a challenging task requiring the refinement of previously developed tools.
Also some natural independent questions, related to the ODE problem, were
raised and answered partially.

In the final month of our meeting in 2012 (as well as the last week of
our meeting in 2011) we focused on several related challenging problems
mentioned in previous section.

In addition to these activities we benefited from the interactions with
participants of the trimester program ”Mathematical challenges of materials
science and condensed matter physics”. Some of the participants had interac-
tions with local PDE experts working on related subjects, namely Radu Ignat
had interactions with Mathias Kurzke and Arghir Zarnescu had discussions
with Soeren Bartels and Alex Raisch.

Our research group will continue the study of the problems mentioned be-
fore and expand on the ideas obtained during this meeting, in future meetings
such as in April 2014 at The Mathematisches Forschungsinstitut Oberwol-
fach.
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Main Results

The results of our work have been divided into two papers to be submitted
soon, namely [9] studying the ODE problem, and [10], studying the tensorial
stability problem. These have been announced in [8].

We mention now the main results contained in [9] and [10]. To this end
we consider the following Landau-de Gennes energy functional:

F (Q) =

∫
R3

[1

2
|∇Q|2 + fB(Q)

]
dx, Q ∈ H1(R3,S0),

where
S0

def
= {Q ∈ R3×3, Q = Qt, tr(Q) = 0}

denotes the set of Q-tensors (i.e., traceless symmetric matrices in R3×3, see
[1] for their physical interpretation). The bulk energy density fB accounts
for the bulk effects and has the following form

fB(Q) = −a
2

2
|Q|2 − b2

3
tr(Q3) +

c2

4
|Q|4, (0.1)

where a2, c2 > 0 and b2 ≥ 0 are constants and |Q|2 def
= tr(Q2). A critical point

of the functional F satisfies the Euler-Lagrange equation

∆Q = −a2Q− b2[Q2 − 1

3
|Q|2 Id] + c2 |Q|2Q, (0.2)

where the term 1
3
b2 |Q|2 Id is a Lagrange multiplier that accounts for the

tracelessness constraint. It is well known that solutions of (0.2) are smooth
(see for instance [13]).

Remark 1 We should point out now that although the equation (0.2) seems
to depend on three parameters a2, b2 and c2, there is only one independent
parameter in the problem which can be chosen to be a2 for fixed b2 and c2

(after a suitable rescaling Q 7→ λQ(x/µ) for two parameters λ, µ > 0).

We were interested in studying the radially-symmetric solution of (0.2).
For that, a measurable S0-valued map Q : R3 → S0 is called radially-
symmetric if

Q(Rx) = RQ(x)Rt for any rotation R ∈ SO(3) and a.e. x ∈ R3.

4



In fact, such a map Q(x) has only one degree of freedom: there exists a mea-
surable radial scalar function u : (0,+∞)→ R such that Q(x) = u(|x|) H(x)
for a.e. x ∈ R3 , where H is the so called hedgehog:

H(x) =
x

|x|
⊗ x

|x|
− 1

3
Id

and the radial scalar profile u of Q is given by u(|x|) = 3
2
tr(Q(x)H(x)) for

a.e. x ∈ R3.

We focused on the stability and properties of the profile of the following
radially symmetric solution of (0.2), called melting hedgehog :

H(x) = u(|x|)H(x) (0.3)

where the radial scalar profile u is the unique positive solution of the following
semilinear ODE:

u′′(r) +
2

r
u′(r)− 6

r2
u(r) = F (u(r)) for r > 0 (0.4)

subject to boundary conditions u(0) = 0 and limr→∞ u(r) = s+ where

F (u) = −a2 u− b2

3
u2 +

2c2

3
u3 (0.5)

and s+
def
= b2+

√
b4+24a2c2

4c2
is the positive zero of F .

Our main result concerned the local stability of the melting hedgehog
(see [10]). We highlight that H is a critical point of (0.2), but has infinite
energy F , i.e., F (H) =∞. Therefore, the stability issue was carried out by
analyzing the following second variation of the modified functional F at the
point H in the direction V ∈ C∞c (R3; S0), denoted by Q(V ):

Q(V ) =
1

2

d2

dt2

∫
R3

[1

2
|∇(H + t V )|2 + fB(H + t V )− 1

2
|∇H|2 − fB(H)

]
dx

=

∫
R3

[1

2
|∇V |2 +

(
− a2

2
+
c2u2

3

)
|V |2 − b2 u tr(H̄ V 2) + c2 u2 tr2(H̄ V )

]
dx.

(0.6)
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Theorem 0.1 There exists a20 > 0 such that for all a2 < a20 the melting
hedgehog H defined at (0.3) is a locally stable critical point of (0.2), i.e.,
Q(V ) ≥ 0 for all V ∈ C∞c (R3; S0). Moreover Q(V ) = 0 if and only if
V ∈ span{∂xi

H}3i=1, i.e., the kernel of the second variation is generated by
translations of H(x).

There exists a21 > 0 so that for any a2 > a21 there exists V∗ ∈ C∞c (R3; S0)
such that Q(V∗) < 0. Any such V∗ cannot be purely uniaxial (i.e., V∗(x) has
three different eigenvalues for some point x ∈ R3).

In order to study the stability we had to understand the underlying scalar
profile. We have in fact studied a more general ODE. We obtained an exis-
tence and uniqueness result of solution for a special type of semilinear ODE
that generalizes (0.4). Let F : R→ R be a C1 function satisfying the follow-
ing conditions:

ts+

F (t)

Figure 1: A schematic graph of
F on R+.


F (0) = F (s+) = 0, F ′(s+) > 0,

F (t) < 0 if t ∈ (0, s+),

F (t) > 0 if t > s+,

(0.7)
for some s+ > 0.

We focused on the following semilinear ODE:

u′′(r) +
p

r
u′(r)− q

r2
u(r) = F (u(r)) on (0, R) (0.8)

where we assume
p, q ∈ R and q > 0.

We present the result for the case of finite domains (i.e., (0, R) with R ∈
(0,+∞)) and the infinite domain (0,+∞) (i.e. R = +∞) under the limit
conditions

u(0) = 0, u(R) = s+, (0.9)
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with the standard convention u(∞) = limr→∞ u(r) = s+ if R = +∞.

Theorem 0.2 Under the assumption (0.7), there exists a unique non-negative
solution u of (0.8) with boundary conditions (0.9). Moreover, this solution
is strictly increasing.

Under some additional conditions on the nonlinearity we are able to prove
the uniqueness of solutions in the general class of nodal (sign changing) so-
lutions. Further fine properties of the solution, necessary for proving Theo-
rem 0.1, are also established. See [9].
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Boston, Inc., Boston, MA, 1994.

[3] H. Brezis, J.M. Coron and E.H. Lieb, Harmonic maps with defects,
Comm. Math. Phys. 107 (1986), no. 4, 649–705.

[4] J.L. Ericksen, Liquid crystals with variable degree of orientation, Arch.
Rational Mech. Anal. 113 (1990), no. 2, 97–120.

[5] P.G. de Gennes and J. Prost, The Physics of Liquid Crystals. Oxford
University Press, 1995, Second Edition.

7



[6] P.G. de Gennes, Physique des solides – Types of singularities permitted
in the ordered phase (French), C.R. Acad. Sc. Paris, Serie B, 275 (1972),
pp. 319–321.

[7] F.C. Frank, On the theory of liquid crystals, Disc. Faraday Soc., 25 (1958)
1.

[8] R.Ignat, L Nguyen, V. Slastikov, and A. Zarnescu, Stability of the vortex
defect in Landau - de Gennes theory of nematic liquid crystals, C.R. Acad.
Sci. Paris, 351, (2013), 13–14, 533-537

[9] R.Ignat, L. Nguyen, V. Slastikov, and A. Zarnescu Uniqueness results for
an ODE related to a generalized Ginzburg-Landau model for liquid crystal,
in preparation

[10] R.Ignat, L. Nguyen, V. Slastikov, and A. Zarnescu On stability of the
radially symmetric solution in a Landau - de Gennes model for liquid crys-
tals, in preparation

[11] T. Kato, Perturbation Theory for Linear Operators. Vol. 132
of Grundlehren der Mathematischen Wissenschaften, Springer-Verlag,
Berlin-New York, 2nd ed., 1976.

[12] F.-H. Lin, On nematic liquid crystals with variable degree of orientation,
Comm. Pure Appl. Math. 44 (1991), no. 4, 453–468.

[13] A. Majumdar and A. Zarnescu, Landau-de Gennes theory of nematic
liquid crystals: the Oseen-Frank limit and beyond, Arch. Rat. Mech. Anal.,
196 (2010), no.1, 227-280.

[14] P.Mironescu, On the stability of radial solutions of the Ginzburg-Landau
equation. J. Funct. Anal. 130 (1995), no. 2, 334-344.

[15] L. Nguyen and A. Zarnescu, Refined approximation of Landau-de
Gennes energy minimizers, Calc. Var. Partial Differential Equations, 47,
1 (2013), 383-432

[16] A. Sonnet, A. Kilian and S. Hess, Alignment tensor versus director:
Description of defects in nematic liquid crystals, Phy. Rev. E 52 (1995),
no. 1, 718–722.

8


