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Carsten Carstensen (Humboldt University of Berlin)
Axioms of Adaptivity
Lecture 1:
The adaptive algorithm, Dörfler marking, the set-up of and the axioms of adaptivity, newest-vertex
bisection in 2D, the notion of optimal rates. Overview of the proof. Poisson model problem and
conforming P1 FEM. Discrete trace inequality, jump control, proof of stability and reduction.

Lecture 2:
Axioms of adaptivity imply convergence. Stability; reduction; discrete reliability; quasi-orthogonality;
estimator convergence; (A12), plain and R-linear convergence uniformly on each level.

Lecture 3:
Axioms of adaptivity imply optimal rates. Stevenson’s comparison lemma. Proof of optimal conver-
gence rates. Quasiinterpolation. Proof of (A3)-(A4) in model example.

Lars Diening (Bielefeld University)
Meshes in AFEM
In this lecture series we address adaptive meshes as needed in the adaptive finite element method
(AFEM). We present several refinement algorithms in 2D, 3D and general dimension. The bisection
method of Maubach and Traxler produces meshes with important fine properties. We will explain
those and their need for AFEM:

Shape regularity:
Needed for estimates like Poincaré.

Control of conforming closure:
Needed for the optimality of the AFEM loop with Dörfler marking.

Grading estimates:
Needed for the Sobolev stability of the L2-projection

Limited genetic diversity:
Needed for the optimality of the AFEM loop with maximal marking.

Moreover, we present a novel bisection method (colored bisection) that allows to use any initial mesh.
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Christian Kreuzer (TU Dortmund)
On instance optimal adaptive finite element methods
An instance optimal method calculates a solution for a given error tolerance, such that any solution
with a comparable error requires comparable complexity. Ideally, this property is independent of the
specific problem within the problem class under consideration.

In our case of an adaptive finite element method (AFEM), the considered error is the discretisation
error and complexity is measured in terms of the number of mesh elements or equivalently degrees
of freedom.

We will first illustrate fundamental problems of the issue in one dimension. The main part of the
lecture will then deal with the two-dimensional Poisson problem, where grid refinement and error
localisation become significantly more complex. This requires the development of new structures,
like family relations between nodes and their limited genetic diversity; see Figure 1. In dimensions
greater than two, the issue is still open.

We will focus the presentation on simple (finite-dimensional) data and discuss possible extensions to
more general cases.

Figure 1: The figure illustrates the proof of limited genetic diversity of nodes.

The lecture is based on

[1] L. Diening, C. Kreuzer, R. Stevenson, Instance optimality of the adaptive maximum strategy,
Found. Comput. Math., 16(1):33—68, 2016.

Dirk Praetorius (TU Wien)
Adaptive Finite Element Methods: Optimal Rates vs. Optimal Com-
plexity
Following the influential work [2], most works on adaptive finite element methods (AFEMs) aim
to prove optimal convergence rates, i.e., optimal decay of the error estimator (or some quasi-error
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quantity) with respect to the number of degrees of freedom and, equivalently for fixed polynomial
degree, with respect to the number of elements. However, at least when nonlinear partial differential
equations (PDEs) are concerned, the finite element discretization leads to discrete nonlinear systems
that have to be solved by appropriate iterative linearization. Consequently, a practical AFEM must
control and balance different error sources, i.e.,

• the discretization error arising from discretizing the PDE by finite elements,

• the linearization error arising from linearizing the nonlinear finite element formulation,

• the algebraic error arising from solving the (practically large) linearized finite element formu-
lation by an inexact iterative solver.

Note that this corresponds to a sequential algorithm with potentially three nested loops. Moreover,
any computed finite element approximation to the PDE solution does indeed depend on the full
adaptive history. From this perspective, it is clear that optimal convergence rates of AFEM should
not only be addressed with respect to the number of degrees of freedom, but rather with respect to
the overall computation cost (and hence, with a glance on practice, with respect to the cumulative
computational time); see also [1, 3, 7], where this is addressed by a perturbation analysis.

In our presentations, we will address this question by making three steps:

• symmetric linear elliptic PDEs, where the arising linear finite element systems are solved by
means of a contractive iterative solver;

• nonsymmetric linear elliptic PDEs, where the arising linear finite element systems are first
symmetrized and then solved by means of a contractive iterative solver;

• quasi-linear energy minimization problems with strongly monotone and Lipschitz continuous
nonlinearity, where the nonlinear finite element systems are first linearized and then solved by
means of a contractive iterative solver.

It will be shown that AFEM with optimal complexity (i.e., guaranteed optimal rates with respect
to the overall computation cost) fits nicely in the framework of the axioms of adaptivity [4] and
requires only additional assumptions on the symmetrization, linearization, and iterative algebraic
solver, which can be guaranteed for the considered model problems. Unlike [1, 3, 7], particular focus
will be on guaranteed convergence for arbitrary adaptivity parameters [5, 6, 8, 9].
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Additional Talks

Ani Miraçi (TU Wien)
Iterative Solvers in Adaptive Finite Element Methods
Numerous physical phenomena are modeled through PDEs1 and often discretized via FEM2. As
the unknown true solution may exhibit a singular behavior, AFEMs3 allow to generate a series of
meshes refined towards a singularity by locally refining the local size h of the computational mesh.
Furthermore, in many practical problems, employing globally continuous piecewise polynomials of
degree p ≥ 1 to approximate the unknown solution yields improved accuracy and faster convergence.

However, one still needs to design suitable iterative solvers to treat the arising discrete system of linear
equations. Indeed, even in the case of linear, symmetric, elliptic PDEs, and assuming a conscientious
choice of the discretization parameters h and p has already been made, the remaining linear system
may be too computationally demanding to be resolved via a direct solver.

Thus, to make the overall numerical simulation efficient, we design a geometric multigrid method
based on [4, 5] and guaranteeing: (1) linear complexity, i.e., the computational time is linearly
proportional to the size of the problem; (2) algebraic error contraction in a robust way with respect
to the discretization parameters h and p. To show this, we introduce the two central tools for the
analysis, namely, a strengthened Cauchy–Schwarz inequality and a robust space stable decomposition
employing results from [1] and [2, 3].
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1partial differential equations (PDEs)
2finite element method (FEM)
3adaptive finite element methods (AFEMs)
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Ngoc Tien Tran (University of Augsburg)
Convergent adaptive hybrid higher-order method for convex mini-
mization problems
This talk proposes a convergent adaptive mesh-refining algorithm for hybrid high-order methods in
convex minimization problems with two-sided p-growth. Examples include the p-Laplacian, an opti-
mal design problem in topology optimization, and the convexified double-well problem. The hybrid
high-order method utilizes a gradient reconstruction in the space of piecewise Raviart-Thomas finite
element functions without stabilization on triangulations into simplices. The main results imply
the convergence of the energy and, under further convexity properties, of the approximations of the
primal resp. dual variable. Numerical experiments illustrate an efficient approximation of singular
minimizers and improved convergence rates for higher polynomial degrees. Computer simulations
provide striking numerical evidence that an adopted adaptive HHO algorithm can overcome the
Lavrentiev gap phenomenon even with empirical higher convergence rates.

This is joint work with Carsten Carstensen (Humboldt University of Berlin).

Tabea Tscherpel (TU Darmstadt)

Stability properties of the L2 -projection on graded meshes
The L2-projection mapping to Lagrange finite element spaces is an important tool in numerical
analysis. Its Sobolev stability plays an important role in discrete stability and quasi-optimality
estimates for parabolic problems. For adaptively generated meshes the proof of Sobolev stability is
challenging and requires conditions on how strongly the mesh size varies.

We discuss stability properties under certain conditions on the polynomial degree, on the space
dimension and on the mesh grading.

This is joint work with Lars Diening (Bielefeld University) and Johannes Storn (Leipzig University).
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